Danny reads 4 pages of a book each day.After 12 days, hes still has 82 pages left to read.
How many pages does the book have?

Answers

Answer 1
Answer: Well, he reads 48 pages in those 12 days, that is 12*4 pages.
He has already read 48 pages and he still has 82, so he has a 130=48+82 page book.
Answer 2
Answer: 4x12= 48 add to 82= 130 pages

Related Questions

How do I transform the equations 5x+4y=8 and -2x+5y=30 so that they are in the form that y=MX+b?
Which equation could be used to solve problems involving the relationships between the angles?A) 90 + (8a + 9) = (11 + 2a) B) 90 − (8a + 9) = (11 + 2a) C) (11 + 2a) − 90 = (8a + 9) D) (8a + 9) − (11 + 2a) = 90
if one base of a trapizoid is 7.2 inches and the other base is 6.4 and the hieght is 3.6 what is it all around
A typical stone on the lowest level of the great pyramid in Egypt was a rectangular prism 5 feet long by 5 feet high by 6 feet deep and weighed 15 tons. what was the volume of the average stone? How much did one cubic foot of this stone weigh?
Please help!!!!!!!!!!!!!!!!!!!

ASAP HELP ME!! PLEASE SHOW WORK AND CORRECT Answers!!! (JUST THE 1st ONE! And the answer I circled is wrong)

Answers

6*2+24+30+18=84
It's not the volume it's area
the awnser is 96 because you would chose the one bigger or you wouldn't chose the one smaller so choose a medium number 96

How do you solve a quadratic equation

Answers

- \beta +- √( \beta )  {2} -4ac (all divided by)/2a
You should already know how to factor quadratics. (If not, review Factoring Quadratics.) The new thing here is that the quadratic is part of an equation, and you're told to solve for the values of x that make the equation true. Here's how it works: Solve (x – 3)(x – 4) = 0. Okay, this one is already factored for me. But how do I solve this?Think: If I multiply two things together and the result is zero, what can I say about those two things? I can say that at least one of them must also be zero. That is, the only way to multiply and get zero is to multiply by zero. (This is sometimes called "The Zero Factor Property" or "Rule" or "Principle".) Warning: You cannot make this statement about any other number! You can only make the conclusion about the factors ("one of them must equal zero") if the product itself equals zero. If the above product of factors had been equal to, say, 4, then we would still have no idea what was the value of either of the factors; we would not have been able (we would not have been mathematically "justified") in makingany claim about the values of the factors. Because you can only make the conclusion ("one of the factors must have equaled zero") if the product equals zero, you must always have the equation in the form "(quadratic) equals (zero)" before you can attempt to solve it.  The Zero Factor Principle tells me that at least one of the factors must be equal to zero. Since at least one of the factors must be zero, I'll set them eachequal to zero:x – 3 = 0   or   x – 4 = 0This gives me simple linear equations, and they're easy to solve:x = 3  or  x = 4And this is the solution they're looking for:  x = 3, 4Note that "x = 3, 4" means the same thing as "x = 3  or  x = 4"; the only difference is the formatting. The "x = 3, 4" format is more-typically used.One important issue should be mentioned at this point: Just as with linear equations, the solutions to quadratic equations may be verified by plugging them back into the original equation, and making sure that they work, that they result in a true statement. For the above example, we would do the following: Checking x = 3 in (x – 3)(x – 4) = 0:([3] – 3)([3] – 4) ?=? 0 
     (3 – 3)(3 – 4) ?=? 0
 
               (0)(–1) ?=? 0
 
                       0   =   0
Checking x = 4 in (x – 3)(x – 4) = 0:([4] – 3)([4] – 4) ?=? 0 
     (4 – 3)(4 – 4) ?=? 0
 
                 (1)(0) ?=? 0
 
                       0   =   0
So both solutions "check" and are thus verified as being correct.Solve x2 + 5x + 6 = 0.This equation is already in the form "(quadratic) equals (zero)" but, unlike the previous example, this isn't yet factored. The quadratic must first be factored, because it is only when you MULTIPLY and get zero that you can say anything about the factors and solutions. You can't conclude anything about the individual terms of the unfactored quadratic (like the 5x or the 6), because you can add lots of stuff that totals zero.So the first thing I have to do is factor:x2 + 5x + 6 = (x + 2)(x + 3)Set this equal to zero:(x + 2)(x + 3) = 0Solve each factor: Copyright © Elizabeth Stapel 2002-2011 All Rights Reservedx + 2 = 0  or  x + 3 = 0 
x = –2  or  x = – 3
The solution to x2 + 5x + 6 = 0 is x = –3, –2Checking x = –3 and x = –2 in x2 + 5x + 6 = 0:[–3]2 + 5[–3] + 6 ?=? 0 
           9 – 15 + 6 ?=? 0
 
           9 + 6 – 15 ?=? 0
 
               15 – 15 ?=? 0
 
                        0   =   0
[–2]2 + 5[–2] + 6 ?=? 0 
           4 – 10 + 6 ?=? 0
 
           4 + 6 – 10 ?=? 0
 
               10 – 10 ?=? 0
 
                        0   =   0
So both solutions "check".Solve x2 – 3 = 2x.This equation is not in "(quadratic) equals (zero)" form, so I can't try to solve it yet. The first thing I need to do is get all the terms over on one side, with zero on the other side. Only then can I factor and solve:x2 – 3 = 2x 
x2 – 2x – 3 = 0 
(x – 3)(x + 1) = 0 
x – 3 = 0  or  x + 1 = 0 
x = 3  or  x = –1
Then the solution to x2 – 3 = 2x is x = –1, 3Solve (x + 2)(x + 3) = 12.It is very common for students to see this type of problem, and say:"Cool! It's already factored! So I'll set the factors equal to 12 and 
solve to get x = 10 and x = 9. That was easy!"Yeah, it was easy; it was also (warning!) wrong. Besides the fact that (10 + 2)(9 + 3) does not equal 12, you should never forget that you must have "(quadratic) equals (zero)" before you can solve.So, tempting though it may be, I cannot set each of the factors above equal to the other side of the equation and "solve". Instead, I first have to multiply out and simplify the left-hand side, then subtract the 12 over to the left-hand side, and re-factor. Only then can I solve.(x + 2)(x + 3) = 12 
x2 + 5x + 6 = 12 
x2 + 5x – 6 = 0 
(x + 6)(x – 1) = 0 
x + 6 = 0  or   x – 1 = 0 
x = –6  or   x = 1
Then the solution to (x + 2)(x + 3) = 12 is x = –6, 1

Jeremiah created the ratio 5:13 from the table.what is he comparing

Answers

Where is the table. You need the table to do it

The square abcd has side length 10cm. E is the midpoint of BC. Work out the length of DE. Answer to 1 decimal place.

Answers


-- DEC is a right triangle.

-- DC is one side of the square  =  10 cm
-- EC is half the side of the square = 5 cm
-- DE is the hypotenuse = square root of (5² + 10²)  =  √(125 cm²) .

-- Truncated to one decimal place, that's  11.1 cm. 

-- Rounded to one decimal place, it's 11.2 cm.


Think of it as a triangle. E is the midpoint of BC, so EC is 5cm. Then CD is 10cm. Pythagoras it, so 5^2 + 10^2 = DE^2. Rt(125) = 11.2 to 1 decimal place. That's the answer

Does this graph show a function? Explain how you know.A. Yes, there are no y-values that have more than one x-value.
B. No, there are y-values that have more than one x-value.
C. No; the graph fails the vertical line test.
D. Yes; the graph passes the vertical line test.

Answers

Answer:

C

Step-by-step explanation:

This does not represent a function.  The gtraph fails the vertical line test:  a vertical line drawn here will intersect the graph in more than one place.

Answer:

C

Step-by-step explanation:

You have a can that is in the shape of a cylinder. It has a volume of about 1,738 cubic centimeters. The height of the can use 23 centimeters. What is the approximate length of the radius? Use 3.14 for pi

Answers

Answer:

~8.7

Step-by-step explanation:

So we know that the formula for volume is 3.14 * r^2 * h.

So first we do 1738/23 to get an ugly ~ 75.6 Now he have to square root that to get r.

The square root of 75.6 is ~ 8.7