If 2050 J of heat are added to a 150 g object its temperature increases by 15°C.(a) What is the heat capacity of this object?
(b) What is the object's specific heat?

Answers

Answer 1
Answer:

When an object gets heated by a temperature ΔT energy needed, E = mcΔT

Here energy is given E = 2050 J

Mass of object = 150 g

Change in temperature ΔT  = 15 ^0C = 15 K

a) Heat capacity of an object equal to the ratio of the heat added to (or removed from) an object to the resulting temperature change.

  So heat capacity = E/ΔT = 2050/15 = 136.67 J/K

b) We have E = mcΔT

                    c = (2050)/(150*10^(-3)*15)  = 911.11 J/kgK

 So object's specific heat = 911.11 J/kgK


Related Questions

While a roofer is working on a roof that slants at 37.0 ∘∘ above the horizontal, he accidentally nudges his 92.0 NN toolbox, causing it to start sliding downward, starting from rest. If it starts 4.25 m from the lower edge of the roof, how fast will the toolbox be moving just as it reaches the edge of the roof if the kinetic friction force on it is 22.0 N?
A farmer is using a rope and pulley to lift a bucket of water from the bottom of a well. the farmer uses a force f1=57.5 n to pull the bucket of water upwards. the total mass of the bucket of water is f2= 3.9kg. -Calculate how much work Wg in J gravity does on the bucket filled with water as the farmer lifts it up the well. -Calculate the net work Wnet in J done on the bucket of water by the two forces F1 and Fg.
Name the four forces in physics?​
15.Restore the battery setting to 10 V. Now change the number of loops from 4 to 3. Explain what happens to the magnitude and direction of the magnetic field. Now change to 2 loops, then to 1 loop. What do you observe the relationship to be between the magnitude of the magnetic field and the number of loops for the same current
Why are continental rocks much older than oceanic crust?A. Oceanic crust is continually recycled through convection in the earth's mantleB. Oceanic crust is made out of much less dense material than continental crustC. Continental crust is continually renewed through convection in the earth's mantleD. Continental crust eats oceanic crust for breakfast

Four electrons are located at the corners of a square 10.0 nm on a side, with an alpha particle at its midpoint. Part A How much work is needed to move the alpha particle to the midpoint of one of the sides of the square?

Answers

Final answer:

The total work done in moving an alpha particle from the center to the side of a square with electrons at its corners involves finding the potential energy change, which can be calculated using the charges, distances, and Coulomb's constant.

Explanation:

The question deals with the fundamental concepts of electrostatics and the energy associated with moving charges in an electric field. Given the aforementioned question, we are required to find the work done moving an alpha particle (a helium nucleus, having a charge of +2e) from the center of a square to one of its sides, with electrons (each having a charge of -e) being situated at its corners.

To determine the work done, we must consider the potential energy changes resulting from moving the alpha particle. The potential energy associated with two point charges is given by the formula: U = k*q1*q2/r, where q1 and q2 are charges, r is the distance between them, and k is Coulomb's constant.

First, we calculate the potential energy at the center due to all four electrons then find the potential energy at the midpoint of the side. The work done is the difference between these two potential energies. As the electrons are all at an equal distance from the alpha particle (in the center and on the side), the calculations would involve plugging in the values for the charge of an electron, the charge of an alpha particle, the given distance values, and Coulomb's constant into the aforementioned formula.

Learn more about Electric Potential Energy here:

brainly.com/question/12645463

#SPJ2

Final answer:

The work required to move the alpha particle from the midpoint to the midpoint of one of the side of the square with four electrons at its corners would be zero as the net electric field at the midpoint due to the electrons is zero.

Explanation:

The subject of this question pertains to the concept of electrostatics and potential energy in physics. In this scenario, the alpha particle is initially at the midpoint of a square with four electrons at its corners. As per Coulomb's Law, the electrostatic force between two charges is inversely proportional to the square of the distance between them.

Since the alpha particle placed in the center of the square and four electrons at the corners form a symmetrical system, the net force and hence the net electric field at the midpoint due to the electrons is zero. Thus, no work would be required to move the alpha particle to the midpoint of one of the sides of the square as work done is calculated by the formula W = F x d x cos(θ), where F is force, d is the displacement, and θ is the angle between the force and displacement. Since F is equal to zero, the work done will also be zero.

Learn more about Work Done in Moving a Charge in an Electric Field here:

brainly.com/question/32913781

#SPJ2

А pressure gauge with a measurement range of 0-10 bar has a quoted inaccuracy of £1.0% f.s. (+1% of full-scale reading). (a) What is the maximum measurement error expected for this instrument? (b) What is the likely measurement error expressed as a percentage of the or reading if this pressure gauge is measuring a pressure of 1 bar?​

Answers

Answer:

I am not able to answer this question please don't mind...

Explanation:

please marks me as brainliests...

Final answer:

The maximum expected measurement error for a pressure gauge measuring 0-10 bar with an inaccuracy of 1% of full-scale reading is 0.1 bar. When the gauge measures 1 bar, the expected inaccuracy is 10%.

Explanation:

The inaccuracy mentioned here is related to the full-scale reading which means the error is calculated based on the top measurement value. The pressure gauge range is 0-10 bar, so the inaccuracy is one percent of this. (a) Thus, the maximum measurement error expected for this instrument is 1.0% of 10 bar i.e., 0.1 bar. (b) If the gauge is measuring a pressure of 1 bar, then the relative error expressed as a percentage would be the absolute error (0.1 bar) divided by the observed reading (1 bar) i.e., 10%. It means, when measuring 1 bar pressure, the expected measurement error is 10%. This is an example of how instrument inaccuracy is properly interpreted and employed when working with various measurements.

Learn more about Instrument Inaccuracy here:

brainly.com/question/32107600

#SPJ3

A circular coil lies flat on a horizontal surface. A bar magnet is held above the center of the coil with its north pole pointing downward, and is released from rest. What is the direction of the induced current in the coil, as viewed from above, as the magnet approaches the coil in free fall?a. clockwise
b. counterclockwise
c. There is no induced current in the coil.

Answers

Answer:

Option B

Explanation:

As per the Lenz’s law of electromagnetism the current induced in a conductor due to any change has a tendency to oppose the change which is causing this induces current.  

Thus, when a constant magnetic field with an electric circuit is varied, it produces and induced current which flow in a direction such that its sets a magnetic field that tries to restore the flux

Hence, option B is correct

A toy car is tied to a string and pulled across a table horizontally. Which is thecorrect free-body diagram for this situation?
T
FN
FN
T
FN
EN
T
W
W
W
w
А
B
С
D
Ο Α. Α

Answers

y axis:NandW and also f x axis:T and F T away from car.

If you want to make a strong battery, should you pair two metals with high electron affinities, low electron affinities, or a mix? Explain your answer.

Answers

Answer:

Mix

Explanation:

A battery has two electrodes at both of its end terminals namely the anode which is the negatively charged electrode and the anode which is the positively charged electrode.

Now, Electrons usually travel through the battery circuit from the anode to the cathode, and this motion of travel is the propelling force that makes electricity flow through the circuit.

Now, the anode will need to have a low electron affinity because it needs to easily release electrons during discharge while the cathode needs to have a high electron affinity because it normally readily accept electrons during discharge.

Thus, for a battery to be strong, it is a combination of high electron affinity and low electron affinity.

Answer: mix

Explanation:

you cant pair 2 of the same electron affinities

A manufacturer claims that a carpet will not generate more than 5.8 kV of static electricity What magnitude of charge would have to be transferred between a carpet and a shoe for there to be a 5.8 kV potential distance d = 2.8 mm ? Approximate the area of a shoe as 30 cm x 8 cm. Express your answer using two significant figures.

Answers

Answer:

4.4×10⁻⁷ Coulomb

Explanation:

V = Voltage = 5.8 kV

d = Potential distance = 2.8 mm = 0.0028 m

A = Area = 0.3×0.08 = 0.024 m²

ε₀ = permittivity constant in a Vacuum= 8.85×10⁻¹² F/m

(Q)/(V)=(A\epsilon_0)/(d)\n\Rightarrow \Q=V(A\epsilon_0)/(d)\n\Rightarrow Q=5.8* 10^3(0.024* 8.85* 10^(-12))/(0.0028)\n\Rightarrow Q=4.4* 10^(-7)\ C

Magnitude of charge transferred between a carpet and a shoe is 4.4×10⁻⁷ Coulomb.