There is a person who throws a coin vertically downward with an initial speed of 11.8 m/s from the roof of a building, 34.0 m above the ground. How long does it take the coin to reach the ground? Answer in s.

Answers

Answer 1
Answer:

Answer:

Time taken by the coin to reach the ground is 1.69 s

Given:

Initial speed, v = 11.8 m/s

Height of the building, h = 34.0 m

Solution:

Now, from the third eqn of motion:

v'^(2) = v^(2) + 2gh

v'^(2) = 11.8^(2) + 2* 9.8* 34.0 = 805.64

v' = √(805.64) = 28.38 m/s

Now, time taken by the coin to reach the ground is given by eqn (1):

v' = v + gt

t = (v' - v)/(g) = (28.38 - 11.8)/(9.8) = 1.69 s


Related Questions

Consider an astronomical telescope with a 48 centimeter focal-length objective lens and a 10 centimeter focal-length eyepiece. Approximately how many centimeters apart should the lenses be placed
(a) A woman climbing the Washington Monument metabolizes 6.00×102kJ of food energy. If her efficiency is 18.0%, how much heat transfer occurs to the environment to keep her temperature constant? (b) Discuss the amount of heat transfer found in (a). Is it consistent with the fact that you quickly warm up when exercising?
An electromagnetic wave is traveling the +y direction. The maximum magnitude of the electric field associated with the wave is Em, and the maximum magnitude of the magnetic field associated with the wave is Bm. At one instant, the electric field has a magnitude of 0.25 Em and points in the +x direction. At this same instant, the wave's magnetic field has a magnitude which is ... and it is in the ... direction.
A water slide is constructed so that swimmers, starting from rest at the top of the slide, leave the end of the slide traveling horizontally. One person hits the water 5.00 m from the end of the slide in a time of 0.504 s after leaving the slide. Ignore friction and air resistance. Find the height H.
An object of mass 10.0kg is released at point A, slidesto the bottom of the 30° incline, then collides with ahorizontal massless spring, compressing it a maximumdistance of 0.750m. (See below.) The spring constant is 500N/m, the height of the incline is 2.0 m, and the horizontalsurface is frictionless. (a) What is the speed of the object atthe bottom of the incline? (b) What is the work of frictionon the object while it is on the incline? (c) The springrecoils and sends the object back toward the incline. Whatis the speed of the object when it reaches the base of theincline? (d) What vertical distance does it move back up theincline?

Explain why Planck’s introduction of quantization accounted for the properties of black-body radiation.

Answers

Explanation:

The classic model of a black body made predictions of the emission at small wavelengths in open contradiction with what was observed experimentally, this led Planck to develop a heuristic model. This assumption allowed Planck to develop a formula for the entire spectrum of radiation emitted by a black body, which matched the data.

A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 21.0 N/m. The block rests on a frictionless surface. A 5.30×10?2-kg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.97 m/s and sticking.Part AHow far does the putty-block system compress the spring?

Answers

The distance the putty-block system compress the spring is 0.15 meter.

Given the following data:

  • Mass = 0.454 kg
  • Spring constant = 21.0 N/m.
  • Mass of putty = 5.30* 10^(-2)\;kg
  • Speed = 8.97 m/s

To determine how far (distance) the putty-block system compress the spring:

First of all, we would solver for the initialmomentum of the putty.

P_p = mass * velocity\n\nP_p = 5.30* 10^(-2)* 8.97\n\nP_p = 47.54 * 10^(-2) \;kgm/s

Next, we would apply the law of conservation of momentum to find the final velocity of the putty-block system:

P_p = (M_b + M_p)V\n\n47.54* 10^(-2) = (0.454 + 5.30* 10^(-2))V\n\n47.54* 10^(-2) = 0.507V\n\nV = (0.4754)/(0.507)

Velocity, V = 0.94 m/s

To find the compression distance, we would apply the law of conservation of energy:

U_E = K_E\n\n(1)/(2) kx^2 = (1)/(2) mv^2\n\nkx^2 =M_(bp)v^2\n\nx^2 = (M_(bp)v^2)/(k) \n\nx^2 = ((0.454 + 5.30* 10^(-2)) * 0.94^2)/(21)\n\nx^2 = ((0.507 * 0.8836))/(21)\n\nx^2 = ((0.4480))/(21)\n\nx=√(0.0213)

x = 0.15 meter

Read more: brainly.com/question/14621920

Answer:

Explanation:

Force constant of spring K = 21 N /m

we shall find the common velocity of putty-block system from law of conservation of momentum .

Initial momentum of putty

= 5.3 x 10⁻² x 8.97

= 47.54 x 10⁻² kg m/s

If common velocity after collision be V

47.54 x 10⁻² = ( 5.3x 10⁻² + .454) x V

V = .937 m/s

If x be compression on hitting the putty

1/2 k x² = 1/2 m V²

21 x² = ( 5.3x 10⁻² + .454) x .937²

x² = .0212

x = .1456 m

14.56 cm

What is the potential energy of a spring that is compressed 0.65 m by a 25 kg block if the spring constant is 95 N/m?A. 1.6J
B. 7.9J
C. 15J
D. 20J

Answers

Answer:

D. 20J

Explanation:

Answer:

20 J

Explanation:

yes

A celestial body moving in an ellipical orbit around a star

Answers

A celestial body moving in an elliptical orbit around a star is a planet.

Depending on its size, composition, and the eccentricity of its orbit, that scanty description could apply to a planet, an asteroid, a comet, a meteoroid, or another star.

2H is a loosely bound isotope of hydrogen, called deuterium or heavy hydrogen. It is stable but relatively rare — it form only 0.015% of natural hydrogen. Note that deuterium has Z = N, which should tend to make it more tightly bound, but both are odd numbers.Required:
Calculate BE/A, the binding energy per nucleon, for 2H in megaelecton volts per nucleon

Answers

Answer:

0.88 MeV/nucleon

Explanation:

The binding energy (B) per nucleon of deuterium can be calculated using the following equation:

B = (Zm_(p) + Nm_(n) - M)/(A)*931.49 MeV/u

Where:

Z: is the number of protons = 1

N: is the number of neutrons = 1

m_(p): is the proton's mass = 1.00730 u

m_(n): is the neutron's mass = 1.00869 u

M: is the nucleu's mass = 2.01410

A = Z + N = 1 + 1 = 2    

Now, the binding energy per nucleon for ²H is:

B = (Zm_(p) + Nm_(n) - M)/(A)*931.49 MeV/u = (1*1.00730 + 1*1.00869 - 2.01410)/(2)*931.49 MeV/u = 9.45 \cdot 10^(-4) u*931.49 MeV/u = 0.88 MeV/nucleon

Therefore, the binding energy per nucleon for ²H is 0.88 MeV/nucleon.

I hope it helps you!

Final answer:

The binding energy per nucleon for 2H (deuterium) is 1.1125 MeV per nucleon.

Explanation:

The binding energy per nucleon, or BE/A, can be calculated by dividing the total binding energy of the nucleus by the number of nucleons. To calculate the BE/A for 2H (deuterium), we need to know the total binding energy and the number of nucleons in deuterium. The total binding energy of deuterium is approximately 2.225 MeV (megaelectron volts) and the number of nucleons is 2. Therefore, the BE/A for 2H is 2.225 MeV / 2 = 1.1125 MeV per nucleon.

Learn more about Binding energy per nucleon here:

brainly.com/question/10095561

#SPJ11

Consider different points along one spoke of a wheel rotating with constant angular velocity. Which of the following is true regarding the centripetal acceleration at a particular instant of time?a. The magnitude of the centripetal acceleration is greater for points on the spoke closer to the hub than for points closer to the rim
b. both the magnitude and the direction of the centripetal acceleration depend on the location of the point on the spoke.
c. The magnitude of the centripetal acceleration is smaller for points on the spoke closer to the hub than for points closer to the rim but the direction of the acceleration is the same at all points on this spoke.
d. The magnitude and direction of the centripetal acceleration is the same at all points on this spoke.

Answers

Answer:

Option (a).

Explanation:

Let the angular velocity is w.

The centripetal acceleration is given by

a = r w^2

where, r is the distance between the axle and the spoke.

So, more is the distance more is the centripetal acceleration.

(a) For the points on the spoke closer to the hub than for points closer to the rim is larger distance, so the centripetal force is more.

The statement is true.  

(b) The direction of centripetal acceleration is always towards the center, so the statement is false.

(c) It is false.

(d) It is false.

Option (a) is correct.