The magnetic field produced by the solenoid in a magnetic resonance imaging (MRI) system designed for measurements on whole human bodies has a field strength of 5.81 T, and the current in the solenoid is 3.79 × 102 A. What is the number of turns per meter of length of the solenoid?

Answers

Answer 1
Answer:

Answer:

n = 1.22 10⁴ turns/m

Explanation:

The magnetic field in a solenoid is proportional to the intensity of the current, the number of turns per unit length (n) and the magnetic permeability (myo), is described by the equation

      B = μ₀ n I

Let's clear the density of turns

     n = B / (μ₀ I)

Let's replace and calculate

     n = 5.81 / (4pi 10-7 3.79 102)

     n = 5.81 105 / 47.63

     n = 1.22 10⁴ turns / m


Related Questions

Two violin strings are tuned to the same frequency 294 H. The tension in one string is then decreased by 2.0%. What will be the beat frequency heard when the two strings are played together?
A 21 kg mountain lion carries a 3kg cub in it's mouth as it jumps from rest on the ground to the top of a 2 m talk rock. It takes 1 seconds for the mountain lion to jump and reach the top. How much power did the mountain lion exert? I need help to solve for power
For exercise, an athlete lifts a barbell that weighs 400 N from the ground to a height of 2.0 m in a time of 1.6 s. Assume the efficiency of the human body is 25%, and that he lifts the barbell at a constant speed. Show all work and include proper unit for your final answer.a) In applying the energy equation (ΔK + ΔUg + ΔUs + ΔEch + ΔEth = W) to the system consisting of the earth, the barbell, and the athlete,1. Which terms (if any) are positive?2. Which terms (if any) are negative?3. Which terms (if any) are zero? b) Determine the energy output by the athlete in SI unit.c) Determine his metabolic power in SI unit.d) Another day he performs the same task in 1.2 s.1. Is the metabolic energy that he expends more, less, or the same?2. Is his metabolic power more, less, or the same?
A wheel starts at rest, and has an angular acceleration of 4 rad/s2. through what angle does it turn in 3.0 s?
A thin flashlight beam traveling in air strikes a glass plate at an angle of 52° with the plane of the surface of the plate. If the index of refraction of the glass is 1.4, what angle will the beam make with the normal in the glass?

A 1200-kg cannon suddenly fires a 100-kg cannonball at 35 m/s. what is the recoil speed of the cannon? assume that frictional forces are negligible and the cannon is fired horizontally.

Answers

Answer:

 Recoil velocity of cannon = 2.92 m/s

Explanation:

By law of conservation of momentum, we have momentum of cannon = momentum of cannonball.

 Mass of cannon = 1200 kg

Mass of cannon ball = 100 kg

Velocity of cannon ball = 35 m/s

 We have, Momentum of cannon = momentum of cannon ball

                  1200 x v = 100 x 35

                            v =3500/1200 = 2.92 m/s

 Recoil velocity of cannon = 2.92 m/s

Final answer:

The recoil speed of the cannon is 2.92 m/s.

Explanation:

To find the recoil speed of the cannon, we can use the conservation of momentum. The initial momentum of the cannon and cannonball system is zero since the cannon is at rest before firing. The final momentum is the sum of the momenta of the cannon and cannonball after firing. Using the equation:

Initial momentum = Final momentum

(mass of cannon) x (recoil speed of cannon) = (mass of cannonball) x (velocity of cannonball)

Plugging in the given values:

(1200 kg) x (recoil speed of cannon) = (100 kg) x (35 m/s)

Solving for the recoil speed of the cannon:

recoil speed of cannon = (100 kg x 35 m/s) / 1200 kg = 2.92 m/s

Learn more about recoil speed of cannon here:

brainly.com/question/20887742

#SPJ3

A Hall-effect probe to measure magnetic field strengths needs to be calibrated in a known magnetic field. Although it is not easy to do, magnetic fields can be precisely measured by measuring the cyclotron frequency of protons. A testing laboratory adjusts a magnetic field until the proton's cyclotron frequency is 9.70 MHz . At this field strength, the Hall voltage on the probe is 0.549 mV when the current through the probe is 0.146 mA . Later, when an unknown magnetic field is measured, the Hall voltage at the same current is 1.735 mV .A) What is the strength of this magnetic field?

Answers

Answer:

The value of the magnetic field is 2.01 T when Hall voltage is 1.735 mV

Explanation:

The frequency of the cyclotron can help us find the magnitude of the magnetic field, thus then we can compare the effect of increasing Hall voltage  on the probe.

Magnetic field magnitude at initial Hall voltage.

The cyclotron frequency can be written in terms of the magnetic field magnitude as follows

f = \cfrac{qB}{2\pi m}

Solving for the magnetic field.

B = \cfrac{2\pi mf}q

Thus we can replace the given information but in Standard units, also remembering that the mass of a proton is m_p=1.67 * 10^(-27) kg and its charge is q_p=1.6 * 10^(-19) C.

So we get

B = \cfrac{2\pi * 1.67 * 10^(-27) kg * 9.7 * 10^6 Hz}{1.6 * 10^(-19)C}

B =0.636 T

We have found the initial magnetic field magnitude of 0.636 T

Magnetic field magnitude at increased Hall voltage.

The relation given by Hall voltage with the magnetic field is:

V_H =\cfrac{R_HI}t B

Thus if we keep the same current we can write for both cases:

V_(H1) =\cfrac{R_HI}t B_1\nV_(H2) =\cfrac{R_HI}t B_2

Thus we can divide the equations by each other to get

\cfrac{V_(H1) }{V_(H2)}=\cfrac{\cfrac{R_HI}t B_1}{\cfrac{R_HI}t B_2}

Simplifying

\cfrac{V_(H1) }{V_(H2)}=\cfrac{ B_1}{ B_2}

And we can solve for B_2

B_2 =B_1 \cfrac{V_(H2)}{V_(H1)}

Replacing the given information we get

B_2= 0.636 T * \left(\cfrac{1.735 mV}{0.549 mV} \right)

We get

\boxed{B=2.01\, T}

Thus when the Hall voltage is 1.735 mV the magnetic field magnitude is 2.01 T

A wagon is pulled at a speed of 0.40 m/s by a horse exerting 1800 Newtons of horizontal Force. how much work was done by the horse

Answers

The amount of work done per second by the horse exerting a force of 1800 N on a wagon moving with a speed of 0.4 m/s  is 720 J/s.

What is power?

Power is the workdone by a body in one second.

To calculate the work done by the horse in one seconds, we use the formula below

Formula:

  • P = Fv................ Equation 1

Where:

  • P = work done on the horse in one second
  • F = Force of the horse
  • v = Velocity of the wagon

From the question,

Given:

  • F = 1800 N
  • v = 0.4 m/s

Substitute these values into equation 1

  • P = 1800×0.4
  • P = 720 J/s

Hence, the amount of work done per second by the horse is 720 J/s.

Learn more about power here: brainly.com/question/25864308

#SPJ1

Complete question: A wagon is pulled at a speed of 0.40 m/s by a horse exerting 1800 Newtons of horizontal Force. how much work was done by the horse per second.

Using an argument based on the general form of the Schrödinger equation, explain why if \psi (x) is a solution to the Schrödinger equation, then A\psi(x) must also be a solution if A is a constant.​I saw an explanation for this from another posted question, but this person put the explanation in numerical/equation form. Is there any way someone can explain the answer to this question in words (NON numerical/equation form)?

Answers

From a mathematical point of view, the Schrödinger Equation is a LINEAR partial differential equation, as is a partial differential equation that  is defined by a linear polynomial in the solution and its derivatives.

For a linear differential equation, if you got two different solutions\psi and \phi, then the linear combination \alpha \psi + \beta \phi, where \alpha and \beta are scalars, is also a solution.

This also is valid for only one solution (think of the other solution as equal to zero, \phi = 0 ). So, as the Schrödinger Equation is a Linear partial differential equation, then if \psi is a solution, then A \psi must also be a solution.

This is extremely important for physicist, as let us know that the superposition principle is valid.

An element emits light at two nearly equal wavelengths, 577 nm and 579 nm If the light is normally incident on a diffraction grating with 2000 lines/cm., what is the distance between the 3rd order fringes of the two wavelengths on a screen 1 m from the grating?

Answers

Answer:

Explanation:

d = width of slit = 1 / 2000 cm =5 x 10⁻⁶ m

Distance of screen D = 1 m.

wave length λ₁ and λ₂ are 577 x 10⁻⁹ and 579 x 10⁻⁹ m.respectively.

distance of third order bright fringe = 3.5 λ D/d

for 577 nm , this distance = 3.5 x 577 x 10⁻⁹ x 1 /5 x 10⁻⁶

= .403 m = 40.3 cm

For 579 nm , this distance = 3.5 x 579 x 1 / 5 x 10⁻⁶

= 40.5 cm

Distance between these two = 0.2 cm.

An electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.18 x 105 m/s to a final velocity of 2.59 x 106 m/s while traveling a distance of 0.0708 m. The electron's acceleration is due to two electric forces parallel to the x axis: = 8.87 x 10-17 N, and , which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force .

Answers

Complete question:

An electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.18 x 105 m/s to a final velocity of 2.59 x 106 m/s while traveling a distance of 0.0708 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 8.87 x 10-17 N, and , which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F₂.

Answer:

(a) The net force of the electron, ∑F = 4.07 x 10⁻¹⁷ N

(b) the electric force, F₂ = 4.8 x 10⁻¹⁷ N

Explanation:

Given;

initial velocity of the electron, v_0 = +6.18 x 10⁵ m/s

final velocity of the electron, v_f = 2.59 x 10⁶ m/s

the distance traveled by the electron, d = 0.0708 m

The first electric force, F_1 = 8.87*10^(-17) \ N

(a) The net force of the electron is given as;

∑F = F₁ - F₂ = ma

where;

a is the acceleration of the electron

a = (v_f^2 -v_0^2)/(2d) \n\na = ((2.59*10^6)^2 -(6.18*10^5)^2)/(2(0.0708))\n\na = 4.468*10^(13) \ m/s^2

∑F = ma = (9.11 x 10⁻³¹ kg)(4.468 x 10¹³)

∑F = 4.07 x 10⁻¹⁷ N

(b) the electric force, F₂ is given as;

∑F = F₁ - F₂

F₂ = F₁ - ∑F

F₂ = 8.87 x 10⁻¹⁷ - 4.07 x 10⁻¹⁷

F₂ = 4.8 x 10⁻¹⁷ N

Final answer:

The problem involves calculating the acceleration of an electron, then using Newton's second law to find the net force on the electron. This is used to find the magnitude of a second electric force acting on the electron.

Explanation:

First, we can calculate the acceleration of the electron using the formula a = Δv/Δt, where 'a' is acceleration, 'Δv' is the change in velocity, and 'Δt' is the change in time. In this case, Δv = vf - vi = 2.59 x 106 m/s - 6.18 x 105 m/s = 1.972 x 106 m/s. The time taken by the electron to travel 0.0708 m can be found using the equation d = vi t + 0.5 a t₂. We use these values to get Δt which we use to find 'a'.

Next, let's use Newton's second law F = ma to find the net force acting on the electron. The only forces acting on the electron are electric forces, and we know one them is 8.87 x 10-17 N. If we designate this known force as F₁ then the total force F total = F₁ + F₂ where F₂ is the unknown electric force.

Finally, we can find F₂ = F total - F₁. This gives the magnitude of the second electric force.

Learn more about Physics - Electric Forces here:

brainly.com/question/33422584

#SPJ3