If a person’s weight is W on the surface of the earth, calculate what it would be, in terms of W, at the surface of (a) the moon;
(b) Mars;
(c) Jupiter.

Answers

Answer 1
Answer:

Answer:b

Explanation:


Related Questions

Give a quantitative definition of being in contact.
(10 points) A spring with a 7-kg mass and a damping constant 12 can be held stretched 1 meters beyond its natural length by a force of 4 newtons. Suppose the spring is stretched 2 meters beyond its natural length and then released with zero velocity. In the notation of the text, what is the value c2−4mk? m2kg2/sec2 Find the position of the mass, in meters, after t seconds. Your answer should be a function of the variable t of the form c1eαt+c2eβt where α= (the larger of the two) β=
Kate, a bungee jumper, wants to jump off the edge of a bridge that spans a river below. Kate has a mass m, and the surface of the bridge is a height h above the water. The bungee cord, which has length L when unstretched, will first straighten and then stretch as Kate falls. Assume the following: The bungee cord behaves as an ideal spring once it begins to stretch, with spring constant k. Kate doesn't actually jump but simply steps off the edge of the bridge and falls straight downward. Kate's height is negligible compared to the length of the bungee cord. Hence, she can be treated as a point particle. Use g for the magnitude of the acceleration due to gravity.
If the wire is lowered farther from the compass, how does the new angle of deflection of the north pole of the compass needle compare to its initial deflection?
A propeller is modeled as five identical uniform rods extending radially from its axis. The length and mass of each rod are 0.777 m and 2.67 kg, respectively. When the propellor rotates at 573 rpm (revolutions per minute), what is its rotational kinetic energy?

A machine can make doing work easier by reducing the force exerted, changing the distance over which the force is exerted, or changing the direction of the force.True OR False


HELP ME!!!!!!¡!!!!

Answers

I believe the correct answer is true. A machine can make doing work easier by reducing the force exerted, changing the distance over which the force is exerted, or changing the direction of the force. Hope this answer the question.

Q18: A cube of aluminum has an edge length of 20 cm. Aluminum has adensity of 2.7 g/cm and a specific heat of 0.217 cal/ g.°С. When
the internal energy of the cube increases by 47000 cal its temperature
increases by:
A
B
C
D
E
5 °C
10 °C
20 °C
100 °C
200 °C

Answers

The change in temperature of this cube of aluminum is equal to: B. 10°C

Given the following data:

  • Edge length, L = 20 cm.
  • Density of Aluminum = 2.7 g/cm
  • Specific heat capacity (C) of aluminum = 0.217 Cal/g°С
  • Internal energy = 47000 calories.

To find the change in temperature of this cube of aluminum:

First of all, we would determine the volume of this cube of aluminum.

Volume \;of \;a \;cube = L^3\n\nVolume \;of \;a \;cube = 20^3\n\nVolume \;of \;a \;cube = 8000\; cm^3

Next, we calculate the mass of this cube of aluminum:

Mass = Density * Volume\n\nMass = 2.7 * 8000

Mass = 21,600 grams.

Now, we can find the change in temperature of this cube of aluminum:

Mathematically, the quantity of heat energy is given by the formula;

Q = mc\theta

Where:

  • Q represents the quantity of heat energy.
  • m represents the mass of an object.
  • c is the specific heat capacity.
  • ∅ is the change in temperature.

Substituting the parameters into the formula, we have;

47000 = 21600 * 0.217 * \theta\n\n47000 = 4687.2 \theta\n\n \theta =(47000)/(4687.2) \n\n \theta = 10.03

Change in temperature = 10°C

Read more: brainly.com/question/18877825

Answer:

10 °C

Explanation:

From the question given above, the following data were obtained:

Egde length (L) of aluminum = 20 cm

Density of Aluminum = 2.7 g/cm³

Specific heat capacity (C) of aluminum = 0.217 cal/ g°С

Heat (Q) energy = 47000 cal

Change in Temperature (ΔT) =?

Next, we shall determine the volume of the aluminum. This can be obtained as follow:

Egde length (L) of aluminum = 20 cm

Volume (V) of aluminum =?

V = L³

V = 20³

V = 8000 cm³

Thus, the volume of the aluminum is 8000 cm³

Next, we shall determine the mass of the aluminum. This can be obtained as follow:

Density of Aluminum = 2.7 g/cm³

Volume of Aluminum = 8000 cm³

Mass of aluminum =.?

Density = mass/volume

2.7 = mass /8000

Cross multiply

Mass of aluminum = 2.7 × 8000

Mass of Aluminum = 21600 g

Finally, we shall determine the change in temperature of the aluminum as follow:

Specific heat capacity (C) of aluminum = 0.217 Cal/g°С

Heat (Q) energy = 47000 Cal

Mass (M) of Aluminum = 21600 g

Change in Temperature (ΔT) =?

Q = MCΔT

47000 = 21600 × 0.217 × ΔT

47000 = 4687.2 × ΔT

Divide both side by 4687.2

ΔT = 47000 / 4687.2

ΔT = 10 °C

Therefore, the increase in the temperature of the aluminum is 10 °C.

Sharece knows that wave peaks and valleys can add and subtract. What would be the net effect if she was able to cross Wave 1 (a large-amplitude wave in a valley phase) with Wave 2 (a wave with slightly smaller amplitude than Wave 2, in a peak phase)?Sharece knows that wave peaks and valleys can add and subtract. What would be the net effect if she was able to cross Wave 1 (a large-amplitude wave in a valley phase) with Wave 2 (a wave with slightly smaller amplitude than Wave 2, in a peak phase)?

Answers

Answer:

The two waves will add vectorially to produce a small amplitude wave in a valley phase.

Explanation:

The two waves will add vectorially to produce a small amplitude wave in a valley phase. This is because the amplitudes of the waves are slightly different and in opposite directions. When wave 1 cancels out all of wave 2, the resultant wave would be the slight difference between both waves, and it would be in the direction of wave 1 which is a valley phase.

You hit a hockey puck and it slides across the ice at nearly a constant speed.Is a force keeping it in motion?Explain.

Answers

At constant speed and varying position of the hockey puck, implies a change in the velocity of the hockey puck and net force is acting on it to keep it in motion.

According to Newton's second law of motion, the force applied to a an object is directly proportional to the product of mass and acceleration of the object.

F = ma

Acceleration is the change in the velocity of an object per change in time of motion.

  • At constant velocity, the acceleration of an object iszero.
  • When acceleration of an object is zero, the force on the object is zero.
  • A constant speed (magnitude only) and change in the direction of the object, implies a change in velocity of the object.
  • at changing velocity, the acceleration on an object is positive, and hence net force acts on the object.

Thus, we can conclude that at constant speed and varying position of the hockey puck, implies a change in the velocity of the hockey puck and net force is acting on it to keep it in motion.

Learn more here: brainly.com/question/8722829

Answer:

Explanation:

When the puck is sliding on the ice, there is no force being exerted on the puck to keep it moving forward. Instead, inertia keeps the puck moving forward. Friction between the puck and the ice gradually slows the puck down. You hit a hockey puck and it slides across the ice at nearly a constant speed

While testing at 30 feet below the surface in Lake Minnetonka, with the sub stopped and in equilibrium, one of the students aboard the sub drops a hammer that goes through the hull of the submarine, and sticks out of the submarine handle first. When this happens, a seal forms immediately around the handle, so that no water enters the sub. What is the new equilibrium position for the sub?

Answers

Answer:

Explanation:

The equilibrium position of the sub is at the surface of the lake

We often refer to the electricity at a typical household outlet as being 120 V. In fact, the voltage of this AC source varies; the 120 V is __________. We often refer to the electricity at a typical household outlet as being 120 V. In fact, the voltage of this AC source varies; the 120 V is __________. the minimum value of the voltage the peak value of the voltage the average value of the voltage the rms value of the voltage

Answers

Explanation:

We often refer to the electricity at a typical household outlet as being 120 V. In fact, the voltage of this AC source varies; the 120 V is "the rms value of the voltage".

The rms value of voltage is given by :

V_(rms)=(V_(pk))/(√(2))

Where

v_(pk) is the peak value of voltage

So, the correct option is (d). " rms value of voltage".