A body of mass 80kg was lifted vertically through a distance of 5.0 metres. Calculate the work done on the body. ( Acceleration due to gravity g=10ms²)​

Answers

Answer 1
Answer:

Answer:

80×5×10=4000J

so therefore, work done on the body is 4000J


Related Questions

Four point charges are individually brought from infinity and placed at the corners of a square. Each charge has the identical value +Q. The length of the diagonal of the square is 2a. What is the electric potential at P, the center of the square?a. kQ/4a b. kQ/a c. zero volts d. 2kQ/a e. 4kQ /a
An electric generator contains a coil of 140 turns of wire, each forming a rectangular loop 71.2 cm by 22.6 cm. The coil is placed entirely in a uniform magnetic field with magnitude B = 4.32 T and initially perpendicular to the coil's plane. What is in volts the maximum value of the emf produced when the loop is spun at 1120 rev/min about an axis perpendicular to the magnetic field?
Why might a scientist want to use a model to study the solar system? O A. Its extreme simplicity makes it difficult to see patterns in observations. B. Its extremely slow movement makes it difficult to see the motions of different planets. C. Its extremely large size makes it difficult to see all of its parts at the same time. D. Its extremely small size makes it difficult to see planets that are far away​
A student lifts their 75 N backpack 0.50 m onto their chair. How much work is done?
As a prank, your friends have kidnapped you in your sleep, and transported you out onto the ice covering a local pond. Since you're an engineer, the first thing you do when you wake up is drill a small hole in the ice and estimate the ice to be 6.7cm thick and the distance to the closest shore to be 30.5 m. The ice is so slippery (i.e. frictionless) that you cannot seem to get yourself moving. You realize that you can use Newton's third law to your advantage, and choose to throw the heaviest thing you have, one boot, in order to get yourself moving. Take your weight to be 588 N. (Lucky for you that, as an engineer, you sleep with your knife in your pocket and your boots on.)1)(a) What direction should you throw your boot so that you will most quickly reach the shore? away from the closest shore perpendicular to the closest shore straight up in the air at your friend standing on the closest shore2)(b) If you throw your 1.08-kg boot with an average force of 391 N, and the throw takes 0.576 s (the time interval over which you apply the force), what is the magnitude of the force that the boot exerts on you? (Assume constant acceleration.)391 N 3)(c) How long does it take you to reach shore, including the short time in which you were throwing the boot?Just number 3

A high diver of mass 60.0 kg steps off a board 10.0 m above the water and falls vertical to the water, starting from rest. If her downward motion is stopped 2.10 s after her feet first touch the water, what average upward force did the water exert on her

Answers

Answer:

The average upward force exerted by the water is 988.2 N

Explanation:

Given;

mass of the diver, m = 60 kg

height of the board above the water, h = 10 m

time when her feet touched the water, t = 2.10 s

The final velocity of the diver, when she is under the influence of acceleration of free  fall.

V² = U² + 2gh

where;

V is the final velocity

U is the initial velocity = 0

g is acceleration due gravity

h is the height of fall

V² = U² + 2gh

V² = 0 + 2 x 9.8 x 10

V² = 196

V = √196

V = 14 m/s

Acceleration of the diver during 2.10 s before her feet touched the water.

14 m/s is her initial velocity at this sage,

her final velocity at this stage is zero (0)

V = U + at

0 = 14 + 2.1(a)

2.1a = -14

a = -14 / 2.1

a = -6.67 m/s²

The average upward force exerted by the water;

F_(on\ diver) = mg - F_( \ water)\n\nma = mg - F_( \ water)\n\nF_( \ water) = mg - ma\n\nF_( \ water) = m(g-a)\n\nF_( \ water) = 60[9.8-(-6.67)]\n\nF_( \ water) = 60 (9.8+6.67)\n\nF_( \ water) = 60(16.47)\n\nF_( \ water) = 988.2 \ N

Therefore, the average upward force exerted by the water is 988.2 N

Guitar string has an overall length of 1.22 m and a total mass of 3.5 g before being strung on a guitar. Once it is used on the guitar, there is a distance of 70 cm between fixed end points. The guitar string is tightened to a tension of 255 N.What is the frequency of the fundamental wave on the guitar string?

Answers

Answer:

Fundamental frequency= 174.5 hz

Explanation:

We know

fundamental frequency=(velocity)/(2 *length)

velocity =\sqrt{(tension)/(mass per unit length) }

mass per unit length=(3.5)/(1000*1.22)=0.00427(kg)/(m)

Now calculating velocity v=\sqrt{(255)/(0.00427) }

                                           =244.3(m)/(sec)

Distance between two nodes is 0.7 m.

Plugging these values into to calculate frequency

f = (244.3)/(2 *0.7) =174.5 hz

. Using your knowledge of circular (centripetal) motion, derive an equation for the radius r of the circular path that electrons follow in terms of the magnetic field B, the electrons' velocity v, charge e, and mass m. You may assume that the electrons move at right angles to the magnetic field.2. Recall from electrostatics, that an electron obtains kinetic energy when accelerated across a potential difference V. Since we can directly measure the accelerating voltage V in this expierment, but not the electrons' velocity v, replace velocity in your previous equation with an expression containing voltage. The electron starts at rest. Now solve this equation for e/m.

You should obtain e/m = 2V/(B^2)(r^2)

3. The magnetic field on the axis of a circular current loop a distance z away is given by

B = mu I R^2 / 2(R^2 + z^2)^ (3/2)

where R is the radius of the loops and I is the current. Using this result , calculate the magnetic field at the midpoint along the axis between the centers of the two current loops that make up the Helmholtz coils, in terms of their number of turns N, current I, and raidus R.Helmholtz coils are separated by a distance equal to their raidus R. You should obtain:

|B| = (4/5)^(3/2) *mu *NI/R = 9.0 x 10^-7 NI/R

where B is magnetic field in tesla, I is in current in amps, N is number of turns in each coil, and R is the radius of the coils in meters

Answers

Answer:

Explanation:

Magnetic field creates a force perpendicular to a moving charge in its field which is equal to Bev where B is magnetic field , e is amount of charge on the moving charge and v is the velocity of charge particle .

This force provides centripetal force for creation of circular motion. If r be the radius of the circular path

Bev = mv² / r

r = mv / Be

2 ) If an electron is accelerated by an electric field created by potential difference V then electric field

= V / d where d is distance between two points having potential difference v .

force on charged particle

electric field x charge

= V /d x e

work done by field

= force x distance

= V /d x e x d

V e

This is equal to kinetic energy created

V e = 1/2 mv²

= 1/2 m (r²B²e² / m² )

V = r²B²e/ 2 m

e / m = 2 V/ r²B²

3 )

B = (\mu* I* R^2)/(2(R^2+Z^2)^(3)/(2) )

In Helmholtz coils , distance between coil is equal to R so Z = R/2

B = (\mu* I* R^2)/(2(R^2+(R^2)/(4) )^(3)/(2) )

For N turns of coil and total field due to two coils

B = (\mu* I* N)/(R*((5)/(4))^(3)/(2)  )

= (\mu* I* N)/(R)* ((4)/(5))^(3)/(2)

= 9.0 x 10^-7 NI/R

A racing car is travelling at 70 m/s and accelerates at -14 m/s2. What would the car’s speed be after 3 s?

Answers

Question:

A racing car is travelling at 70 m/s and accelerates at -14 m/s^2. What would the car’s speed be after 3 s?

Statement:

A racing car is travelling at 70 m/s and accelerates at -14 m/s^2.

Solution:

  • Initial velocity (u) = 70 m/s
  • Acceleration (a) = -14 m/s^2
  • Time (t) = 3 s
  • Let the velocity of the car after 3 s be v m/s
  • By using the formula,

v = u + at, we have

v = 70 + ( - 14)(3) \n  =  > v = 70 - 42 \n  =  > v = 28

  • So, the velocity of the car after 3 s is 28 m/s.

Answer:

The car's speed after 3 s is 28 m/s.

Hope it helps

4 A wheel starts from rest and has an angular acceleration of 4.0 rad/s2. When it has made 10 rev determine its angular velocity.]

Answers

The rate of change of angulardisplacement is defined as angular velocity. The angular velocity will be 22.41rad/s.

What is angular velocity?

The rate of change of angular displacement is defined as angular velocity. Its unit is rad/sec.

ω = θ t

Where,

θ is the angle of rotation,

tis the time

ω is the angular velocity

The given data in the problem is;

u is the initialvelocity=0

α is the angularacceleration =  4.0 rad/s²

t is the time period=

n is the number of revolution = 10 rev

From Newton's second equation of motion in terms of angular velocity;

\rm \omega_f^2 - \omega_i^2 = 2as \n\n \rm \omega_f^2 - 0 = 2* 4 * 62.83 \n\n \rm \omega_f= 22.41 \ rad/sec

Hence the angular velocity will be 22.41 rad/s.

To learn more about angularvelocity refer to the link

brainly.com/question/1980605

Answer:

w_f= 22.41rad/s

Explanation:

First, we know that:

a = 4 rad/s^2

S = 10 rev = 62.83 rad

Now we know that:

w_f^2-w_i^2=2aS

where w_f is the final angular velocity, w_i the initial angular velocity, a is the angular aceleration and S the radians.

Replacing, we get:

w_f^2-(0)^2=2(4)(62.83)

Finally, solving for w_f:

w_f= 22.41rad/s

A 2,000 kg car travels with a tangentialvelocity of 12 m/s around a circular
track with a radius of 30 meters. What
is the car's rate of centripetal
acceleration?

Answers

The car's rate of centripetal acceleration in the circular path is 4.8 m/s².

The given parameters;

  • mass of the car, m = 2,000 kg
  • velocity of the car, v = 12 m/s
  • radius of the circular path, r = 30 m

The centripetal acceleration of the car is calculated as follows;

a_c = (v^2)/(r)

where;

  • v is the tangential speed of the car
  • r is the radius of the circular path

Substitute the given parameters and solve for the centripetal acceleration;

a_c = (12^2)/(30) \n\na_c = 4.8 \ m/s^2

Thus, the car's rate of centripetal acceleration is 4.8 m/s².

Learn more here:brainly.com/question/11700262

a= v²/R
a = 12²/30 =4.8 m/s²