A shot-putter exerts an unbalanced force of 128 N on a shot giving it an acceleration of 19m/s2. What is the mass of the shot?

Answers

Answer 1
Answer:

Answer:

128 is the ans cuz N is also lnown as mass

Explanation:

128


Related Questions

A wire is wrapped around a piece of iron, and then electricity is run through the wire. What happens to the iron?
Which of the following types of waves is not part of the electromagnetic spectrum? A) microwaves B) gamma rays C) ultraviolet radiation D) radio waves E) sound waves
If the balloon takes 0.19 s to cross the 1.6-m-high window, from what height above the top of the window was it dropped?
A cars mass is 950kg and it travels at a speed of 35 m/s when it rounds a flat curve of radius 215 m.a. Determine the value of the frictional force exerted on the car.b. Determine the value of the coefficient of friction between the tires and the road.
The thickness of a $1 bill is 0.11 mm. If you have a stack of $1 bills 450 m tall, how much money do you have?

So to deal with the irrational belief in REBT, we must Group of answer choices

A. Consult with a friend and get their feeback

B. Dispute the beliefs by asking if these are true and examining the evidence

C. Seek mental health counseling

D. It is just too hard so let's just forget it.

Answers

Answer:

i believe the answer is B

Explanation:

Seeking the right answer is the best thing to do

A uniform, 4.5 kg, square, solid wooden gate 1.5 m on each side hangs vertically from a frictionless pivot at the center of its upper edge. A 1.3 kg raven flying horizontally at 4.5 m/s flies into this door at its center and bounces back at 2.5 m/s in the opposite direction. (a) What is the angular speed of the gate just after it is struck by the unfortunate raven? (b) During the collision, why is the angular momentum conserved but not the linear momentum?

Answers

Answer:

a) Angular speed(w) = 2.02rad/sec

b) 73J ( It is Inelastic Collision)

Explanation:

Given:

Mass=45kg

Length on each side = 1.5m side which is hangs vertically from a frictionless pivot at the center of its upper edge.

We need to calculate

(a) What is the angular speed and

(b) To know why the angular momentum conserved but not the linear momentum

CHECK THE ATTACHMENT FOR DETAILED EXPLATION

Select True or False for the following statements about Heisenberg's Uncertainty Principle. True False It is not possible to measure simultaneously the x and y positions of a particle exactly.True False It is not possible to measure simultaneously the x and y momentum components of a particle exactly.
True False It is not possible to measure simultaneously the z position and the z momentum component of a particle exactly.

Answers

Answer:

Statement 1) False

Statement 2) False

Statement 3) True

Explanation:

The uncertainty principle states that " in a physical system certain quantities cannot be measured with random precision no matter whatever the least count of the instrument is" or we can say while measuring simultaneously the position and momentum of a particle the error involved is

P\cdot\delta x\geq (h)/(4\pi )

Thus if we measure x component of momentum of a particle with 100% precision we cannot measure it's position 100% accurately as the error will be always there.

Statement 1 is false since measurement of x and y positions has no relation to uncertainty.

Statement 2 is false as both the momentum components can be measured with 100% precision.

Statement 3 is true as as demanded by uncertainty principle since they are along same co-ordinates.

A beam of light, which is traveling in air, is reflected by a glass surface. Does the reflected beam experience a phase change, and if so, by how much is the phase of the beam changed?

Answers

The reflected beam experienced a phase change of about 180°.

What is reflection in the glass surface?

According to Snell's law, the light that incident on the glass surface will be reflected and transmitted at an angle equals to the angle of incidence.  

By the observation of refractive index of the glass for the normal incidence only 4% of the light is transmitted or reflected.

The light passing through glass is not only reflected on the front surface, but also on the back. For several times the light will gets reflected back and forth. So, the total reflectance through a glass window can be calculated as

                                    2·R / (1+R).

Thus, A light wave travelling in air is reflected by a glass barrier will undergo a  phase change of 180°, while light travelling in glass will not undergo a phase change if it is reflected by a boundary with air.

Learn more about reflection,

brainly.com/question/15487308

#SPJ2

Answer:

180 degree phase change

Explanation:

A 39 kg block of ice slides down a frictionless incline 2.8 m along the diagonal and 0.74 m high. A worker pushes up against the ice, parallel to the incline, so that the block slides down at constant speed. (a) Find the magnitude of the worker's force. How much work is done on the block by (b) the worker's force, (c) the gravitational force on the block, (d) the normal force on the block from the surface of the incline, and (e) the net force on the block?

Answers

Answer:

(a) Fw = 101.01 N

(b) W = 282.82 J

(c) Fg = 382.2 N

(d) N = 368.61 N

(e) Net force = 0 N

Explanation:

(a) In order to calculate the magnitude of the worker's force, you take into account that if the ice block slides down with a constant speed, the sum of forces, gravitational force and work's force, must be equal to zero, as follow:

F_g-F_w=0        (1)

Fg: gravitational force over the object

Fw: worker's force

However, in an incline you have that the gravitational force on the object, due to its weight, is given by:

F_g=Wsin\theta=Mg sin\theta       (2)

M: mass of the ice block = 39 kg

g: gravitational constant =  9.8m/s^2

θ: angle of the incline

You calculate the angle by using the information about the distance of the incline and its height, as follow:

sin\theta=(0.74m)/(2.8m)=0.264\n\n\theta=sin^(-1)(0.264)=15.32\°

Finally, you solve the equation (1) for Fw and replace the values of all parameters:

F_w=F_g=Mgsin\theta\n\nF_w=(39kg)(9.8m/s^2)sin(15.32\°)=101.01N

The worker's force is 101.01N

(b) The work done by the worker is given by:

W=F_wd=(101.01N)(2.8m)=282.82J

(c) The gravitational force on the block is, without taking into account the rotated system for the incline, only the weight of the ice block:

F_g=Mg=(39kg)(9.8m/s^2)=382.2N

The gravitational force is 382.2N

(d) The normal force is:

N=Mgcos\theta=(39kg)(9.8m/s^2)cos(15.32\°)=368.61N

(e) The speed of the block when it slides down the incle is constant, then, by the Newton second law you can conclude that the net force is zero.

According to the Heisenberg uncertainty principle, quantum mechanics differs from classical mechanics in that: Select the correct answer below: Quantum mechanics involves particles that do not move. It is impossible to calculate with accuracy both the position and momentum of particles in classical mechanics. The measurement of an observable quantity in the quantum domain inherently changes the value of that quantity. All of the above

Answers

Answer:

Statement 3 is correct.

Heisenberg's uncertainty principle explains that the measurement of an observable quantity in the quantum domain inherently changes the value of that quantity

Explanation:

Classical mechanics is the study of motion of big, relatable bodies that we come in contact with in our day to day lives.

Quantum mechanics refers to this same study, but for particles on a subatomic level.

Obviously, Classical mechanics' theories and principles were first discovered and they worked for their intended uses (still work!). But when studies on particles on a sub-atomic level intensified, it became impractical to apply those theories and principles to these sub-atomic particles that displayed wave-particle duality nature properly.

Heisenberg's Uncertainty principle came in a time that explanations and justifications were needed to adapt these theories to sub-atomic particles.

The principle explains properly that it is impossible to measure the position and velocity (momentum) of a sub-atomic particle in exact terms and at the same time.

Mathematically, it is presented as

Δx.Δp ≥ ℏ

Where ℏ= adjusted Planck's constant.

ℏ= (h/2π)

And Δx and Δp are the uncertainties in measuring the position and momentum of sub-atomic particles.

The major reason for this is the wave-particle duality of sub-atomic particles. They exist as waves and particles at the same time that a complete knowledge of their position mean that a complete ignorance of their velocity and vice versa.

Taking the statements one at a time

Statement 1

Quantum Mechanics studies sub-atomic particles which are mostly always in motion. So, this is false.

Statement 2

It is impossible to calculate with accuracy both the position and momentum of particles in quantum mechanics not classical mechanics. As stated above, the reason for the uncertainty is the wave-particle duality of sub-atomic particles which the particle in classical mechanics do not exhibit obviously enough.

Statement 3

Any attempt to measure precisely the velocity of a subatomic particle, will knock it about in an unpredictable way, so that a simultaneous measurement of its position has no validity.

An essential feature of quantum mechanics is that it is generally impossible, even in principle, to measure a system without disturbing it. This is basically the uncertainty principle rephrased. This is the only true statement.

Hope this Helps!!!