Which describes the motion of the box based on the resulting free-body diagram?1. It is moving up with a net force of 20 N.
2. It is moving to the right with a net force of 10 N.
3. It is in dynamic equilibrium with a net force of 0 N.
4. It is in static equilibrium with a net force of 0 N.

Answers

Answer 1
Answer:

The statement "It is in dynamic equilibrium with a net force of 0 N" describes the motion of the box based on the resulting free-body diagram. (option 3)

What is a free-body diagram?

A free-body diagram is a diagram that shows all the forces acting on an object. If the net force on an object is zero, then the object is in equilibrium. This means that the object is not accelerating and is either at rest or moving with constant velocity.

In the case of the box in the free-body diagram, there are two forces acting on it: the force of gravity and the force of the table pushing up on the box. The force of gravity is pulling the box down, but the force of the table is pushing the box up.

These two forces are equal in magnitude and opposite in direction, so they cancel each other out. This means that the net force on the box is zero and the box is in dynamic equilibrium.

Learn about free-body diagram here brainly.com/question/10148657

#SPJ3

Answer 2
Answer:

Answer:

4. It is in static equilibrium with a net force of 0 N.

Explanation:

Just got it right :)


Related Questions

An 800 kHz radio signal is detected at a point 2.1 km distant from a transmitter tower. The electric field amplitude of the signal at that point is 800 mV/m. Assume that the signal power is radiated uniformly in all directions and that radio waves incident upon the ground are completely absorbed. The intensity of the radio signal at that point is closest to
If a charge is located at the center of a spherical volume and the electric flux through the surface of the sphere is φ o, what is the flux through the surface if the radius of the sphere doubles?
A 500 W heating coil designed to operate from 110 V is made of Nichrome 0.500 mm in diametera.Assuming the resistivity of the nichrome remains constant at is 20.0 degrees C value find the length of wire used.b. Now consider the variation of resistivity with temperature. What power is delivered to the coil of part (a) when it is warmed to 1200 degrees C.?
Tell whether the statement below is a scalar or a vector
For every increase in mass the gravitational force blank If the total mass increase by effective for the gravitational force

An electron traveling horizontally to the right enters a region where a uniform electric field is directed downward. What is the direction of the electric force exerted on the electron once it has entered the electric field?

Answers

Answer:

Upward

Explanation:

For charged particles immersed in an electric field:

- if the particle is positively charged, the direction of the force is the same as the direction of the electric field

- if the particle is negatively charged, the direction of the force is opposite to the direction of the electric field

In this problem, we have an electron - so a negatively charged particle - so the direction of the force is opposite to that of the electric field.

Since the electric field is directed downward, therefore, the electric force on the electron will be upward.

You perform a double‑slit experiment in order to measure the wavelength of the new laser that you received for your birthday. You set your slit spacing at 1.09 mm and place your screen 8.61 m from the slits. Then, you illuminate the slits with your new toy and find on the screen that the tenth bright fringe is 4.53 cm away from the central bright fringe (counted as the zeroth bright fringe). What is your laser's wavelength ???? expressed in nanometers?

Answers

Answer:

λ = 5.734 x 10⁻⁷ m = 573.4 nm

Explanation:

The formula of the Young's Double Slit experiment is given as follows:

\Delta x = (\lambda L)/(d)\n\n\lambda = (\Delta x d)/(L)

where,

λ = wavelength = ?

L = distance between screen and slits = 8.61 m

d = slit spacing = 1.09 mm = 0.00109 m

Δx = distance between consecutive bright fringes = (4.53\ cm)/(10) = 0.00453 m

Therefore,

\lambda = ((0.00453\ m)(0.00109\ m))/(8.61\ m)

λ = 5.734 x 10⁻⁷ m = 573.4 nm

The animal that is hunted and consumed is considered the

Answers

Predator? like they hunt their prey

Answer:

prey

Explanation:

A uniform, 4.5 kg, square, solid wooden gate 2.0 m on each side hangs vertically from a frictionless pivot at the center of its upper edge. A 1.2 kg raven flying horizontally at 4.5 m/s flies into this door at its center and bounces back at 1.5 m/s in the opposite direction. What is the angular speed of the gate just after it is struck by the unfortunate raven?

Answers

Answer:

Explanation:

Mass of the gate, m_1 = 4.5 kg

Mass of the raven, m_2 = 1.2 kg

Initial speed of raven, v_1 = 4.5 m/s

Final speed of raven, v_2 = - 1.5 m/s

Moment of Inertia of the gate about the axis passing through one end:

I = (1)/(3) m_1 a^2\nI = (1)/(3) *4.5 * 2^2\nI = 6 kg m^2

Angular momentum of the gate, L = I \omega

L = 5.33 \omega

Using the law of conservation of angular momentum:

m_2 v_f (a/2) + I\omega = m_2v_i (a/2)\nI\omega = m_2 (a/2)(v_i - v_f)\n

An element emits light at two nearly equal wavelengths, 577 nm and 579 nm If the light is normally incident on a diffraction grating with 2000 lines/cm., what is the distance between the 3rd order fringes of the two wavelengths on a screen 1 m from the grating?

Answers

Answer:

Explanation:

d = width of slit = 1 / 2000 cm =5 x 10⁻⁶ m

Distance of screen D = 1 m.

wave length λ₁ and λ₂ are 577 x 10⁻⁹ and 579 x 10⁻⁹ m.respectively.

distance of third order bright fringe = 3.5 λ D/d

for 577 nm , this distance = 3.5 x 577 x 10⁻⁹ x 1 /5 x 10⁻⁶

= .403 m = 40.3 cm

For 579 nm , this distance = 3.5 x 579 x 1 / 5 x 10⁻⁶

= 40.5 cm

Distance between these two = 0.2 cm.

While on a hike, a pair of friends get caught in a thunderstorm. Four seconds after seeing the flash of a distant lightning strike, they hear the thunder. How far away was this lightning strike in miles? Note: sound, in air, travels at 340 m/s.

Answers

Answer:

1360 m

Explanation:

Time taken for the thunder to travel the distance to the hikers = 4 seconds

Speed of the thunder = 340 m/s

Speed of light = 3×10⁸ m/s

It can be seen that the speed of light is substantially faster than the speed of sound. This is the reason why there is a delay in seeing the lightning and hearing the thunder.

Distance = Speed × Time

\text{Distance}=340* 4\n\Rightarrow \text{Distance}=1360\ m

Hence, the lightning strike was 1360 m away from the hikers