Most elements in nature exist as mixture of two or more isotopes
t or f

Answers

Answer 1
Answer:

Answer:

Atomic mass is a value that depends on the distribution of an element's isotopes in nature and the masses of those isotopes. Circle the letter of each sentence that is true about a carbon-12 atom. ... Most elements exist as a mixture of two or more isotopes.

So the answer is true.

Thank you and please rate me as brainliest as it will help me to level up


Related Questions

What unit is used to measure energy when calculating specific heat capacity? Give the abbreviation, not the full name.
2. Annealed low-carbon steel has a flow curve with strength coefficient of 75000 psi and strain-hardening exponent of 0.25. A tensile test specimen with a gauge length of 2 in. is stretched to a length of 3.3 in. Determine the flow stress and the average flow stress that the metal experienced during this deformation.
A machine can make doing work easier by reducing the force exerted, changing the distance over which the force is exerted, or changing the direction of the force.True OR False HELP ME!!!!!!¡!!!!
The engine of a model airplane must both spin a propeller and push air backward to propel the airplane forward. Model the propeller as three 0.30-m-long thin rods of mass 0.040 kg each, with the rotation axis at one end.What is the moment of inertia of the propeller?How much energy is required to rotate the propeller at 5800 rpm? Ignore the energy required to push the air.
What is the weight of a 45 kg box?

A twirlers baton is 0.76 m long and spins around its center. The end of the baton has a centripetal acceleration of 47.8 m/s2?A 0.31 s
B 0.56 s
C 4.3s
D 70s

Answers

B 0.56 s is the time period of a twirlers baton.

What is Centripetal Acceleration?

Centripetal acceleration is defined as the property of the motion of an object which traversing a circular path.

Any object that is moving in a circle and has an acceleration vector pointed towards the center of that circle is known as Centripetal acceleration.

The centripetal acceleration is given by:

a = 4π²R/T²

Given values are:

a = 47.8 m/s²

D = 0.76 m  so , R = 0.76/2 = 0.38m

Using this formula,

47.8*T² = 4π² x0.38

T² = (4*3.14^2*0.38)/(47.8)

T = 0.56 s

Therefore,

A twirlers baton is 0.76 m long and spins around its center. The end of the baton has a centripetal acceleration of 47.8 m/s2 which have  time period of 0.56 s.

Learn more about Centripetal acceleration here:

brainly.com/question/14465119

#SPJ5

.

Answer:

C. 4.3 seconds

Explanation:

We know we have exerted of force even when we have done no work this is called _____

Answers

Answer: The correct answer is zero work done.

Explanation:

Work is said to be done when the object moves through a distance when the force is applied to the object.

If the object does not move a distance even the force is exerted on the object then the work done is zero in this case.

Therefore, when the force is exerted even when no work is done then this is called zero work done.

Final answer:

Force is experienced even when no work is done, such as when pushing against a wall. This is due to the fact that work in physics requires force to be applied over a distance. When no movement occurs, no work is done, yet a force was still exerted.

Explanation:

The concept you're referring to is known as force, a fundamental aspect in Newton's laws of motion. According to Newton's third law, every action has an equal and opposite reaction. So, when you push against a wall, it pushes back with an equal amount of force, even though no movement occurs, and therefore no work is done. This is due to the role distance plays in the calculation of work. In the physics sense, work is done when a force is applied over a certain distance.

This is also tied to the concept of potential energy. For example, when a force causes an object to deform, such as compressing a spring, the work done is stored as potential energy in the object until it is released. Yet, if the object does not move or deform, no work has been done, but a force was still exerted.

Learn more about Force without Work here:

brainly.com/question/34174188

#SPJ3

1. Compare and contrast the SI and the English systems of measurement.

Answers

Answer:The SI system is based on the number 10 as well as multiples and products of 10. This makes it much easier to use, and so it has been the accepted system in scientific and technical applications. The English system is more complicated as relationships between units of the same quantity aren't uniform.

Explanation:

Answer:

The metric system is an internationally agreed decimal system of measurement while The International System of Units (SI) is the official system of measurement in almost every country in the world

A spring-loaded gun, fired vertically, shoots a marble 9.0 m straight up in the air. What is the marble's range if it is fired horizontally from 1.8 m above the ground?

Answers

Final answer:

The range of the marble when fired horizontally from 1.8m above the ground can be calculated using the equations of motion in physics. First, the time of flight is found using the vertical motion and then the range is calculated using the time of flight and the initial velocity determined from the vertical launch. The marble's range is approximately 8.4m.

Explanation:

To solve this problem, we need to make use of the concept of projectile motion in physics. The most crucial part in solving this type of problem is to break the motion into its horizontal and vertical components.

First, we find the time the projectile is in the air using the vertical motion. Ignoring air resistance, the time a projectile is in the air is determined by the initial vertical velocity and the height from which it drops. Here, the height is given as 1.8m and we can use the equation h = 0.5gt^2, where h is the height, g is the acceleration due to gravity (9.8 m/s^2), and t is the time. After calculating, we find that the time the marble is in the air is about 0.6 seconds.

Now, we can use the time to find the horizontal distance traveled by the marble, a.k.a the range. The range is given by R = vt, where v is the horizontal velocity, which is the same as the initial vertical velocity. From the problem, we know the marble reached a height of 9.0m when shot vertically, which we can use to find the initial velocity using the equation v = sqrt(2gh), where g is the acceleration due to gravity (9.8 m/s^2) and h is the height. We find that the initial velocity is about 14 m/s.

So, the range R = vt = 14m/s * 0.6s = 8.4m. Therefore, the marble's range when fired horizontally from 1.8m above the ground is approximately 8.4m.

Learn more about Projectile Motion here:

brainly.com/question/29545516

#SPJ3

Two atoms collide while moving in a dilute gas. The larger atom has a mass M1 = 6 Daltons and a speed v1 = 200 m/s, while the smaller has a mass M2 = 1 Daltons. During the collision both atoms simply bounce off each other. They do not change their speeds, but after the collision they each change their directions, bouncing in the indicated directions. (You may express your results using the mass unit "Daltons". 1 Dalton is approximately equal to the mass of a proton or neutron and is defined as one-twelfth the mass of a single neutral carbon-12 atom in its ground state.)A. What is the magnitude of the change in the momentum, Δp1, of mass M1?
B. What is the change in the total momentum of the pair?
C. What is the magnitude of the change in the momentum Δp2, of mass M2?

Answers

Answer:

a). ΔP1=-2.4 x10^(3)  (D*m)/(s)

b). Pp=0 F=0

c). ΔP2=2.4 x10^(3)  (D*m)/(s)

Explanation:

Initial momentum

P_(1)=m_(1)*v_(i1)

Final momentum

P_(1f)=m_(1)*v_(f1)=-m_(1)*v_(i1)

The change of momentum m1 is:

a).

ΔP1=P_(1f)-P_(1)

ΔP1=-m_(1)*v_(i1)-m_(1)*v_(i1)

ΔP1=-2*m_(1)*v_(i1)

ΔP1=-2*6 D*200(m)/(s)

ΔP1=-2.4x10^(3)(D*m)/(s)

b).

The law of conservation of energy in this case there is not external forces so the momentum of the pair change is equal to zero

P=0

Fx=0

c).

ΔP1+ΔP2=0

ΔP2=-ΔP1

ΔP2=--2.4x10^(3)(D*m)/(s)

ΔP2=2.4x10^(3)(D*m)/(s)

Final answer:

The magnitude of the change in momentum of mass M1 is 2400 Daltons*m/s. The change in the total momentum of the pair is 2000 Daltons*m/s. The magnitude of the change in momentum of mass M2 is -400 Daltons*m/s.

Explanation:

A. To find the magnitude of the change in momentum of mass M1, we use the formula Δp1 = m1 * Δv1, where m1 is the mass of M1 and Δv1 is the change in velocity of M1. Since M1 simply changes direction, its change in velocity is equal to 2 times its original velocity. Therefore, Δp1 = m1 * (2v1) = 6 * (2 * 200) = 2400 Daltons*m/s.

B. The change in the total momentum of the pair is equal to the sum of the changes in momentum of M1 and M2. Since M2 also changes direction, its change in velocity is equal to 2 times its original velocity. Therefore, the change in the total momentum is Δp1 + Δp2 = 2400 Daltons*m/s + (-400 Daltons*m/s) = 2000 Daltons*m/s.

C. To find the magnitude of the change in momentum of mass M2, we use the same formula as in part A, but with the values for M2. Δp2 = m2 * Δv2 = 1 * (2 * (-200)) = -400 Daltons*m/s.

Learn more about Momentum here:

brainly.com/question/30677308

#SPJ3

A 1,200 kg car travels at 20 m/s. what is it’s momentum ?

Answers

The momentum of the car is  24000 Kg•m/s

Momentum is defined as the product of mass and velocity. Mathematically, it can be expressed as:

Momentum = mass × velocity

With the above formula, we can obtain the momentum of the car as follow:

  • Mass = 1200 Kg
  • Velocity = 20 m/s
  • Momentum =?

Momentum = mass × velocity

Momentum = 1200 × 20

Momentum of car = 24000 Kg•m/s

Learn more about momentum:

brainly.com/question/250648

Answer:

24000 kg·m/s

Explanation:

Momentum is Mass x Velocity, so 1200 kg time 20 m/s =  24000 kg-ms/s