Define the term energy density of a body under strain​

Answers

Answer 1
Answer:

Answer:

Please mark as Brainliest!!

Explanation:

Strain energy is defined as the energy stored in a body due to deformation. The strain energy per unit volume is known as strain energy density and the area under the stress-strain curve towards the point of deformation. When the applied force is released, the whole system returns to its original shape.


Related Questions

A Lincoln Continental is twice as long as a VW Beetle, when they are at rest. On a 2-lane road, the Continental driver passes the VW Beetle. Unfortunately for the Continental driver, a stationary policeman has set up a speed trap, and the policeman observes that the Continental and the Beetle have the same length. The VW is going at half the speed of light. How fast is the Lincoln going ? (Express your answer as a multiple of c).
Is the magnet in a compass a permanent magnet or an electromagnet?
A runner first runs a displacement A of 3.20 km due south, and then a second displacement B that points due east. (a) The magnitude of the resultant displacement A + B is 5.38 km. What is the magnitude (in m) of B?
An electron is moving in the presence of an electric field of 400 N/C. What force does the electron experience?
Light from a sodium vapor lamp (λ-589 nm) forms an interference pattern on a screen 0.91 m from a pair of slits in a double-slit experiment. The bright fringes near the center of the pattern are 0.19 cm apart. Determine the separation between the slits. Assume the small-angle approximation is valid here.

An athlete swings a 6.50-kg ball horizontally on the end of a rope. The ball moves in a circle of radius 0.900 m at an angular speed of 0.700 rev/s. (a) What is the tangential speed of the ball

Answers

Answer:

v = 3.951 m/s

Explanation:

Given that,

Mass of a ball, m = 6.5 kg

Radius of the circle, r = 0.9 m

Angular speed of the ball, \omega=0.7\ rev/s=4.39\ rad/s

Let v is the tangential speed of the ball. It is given in terms of angular speed is follows :

v=r\omega\n\nv=0.9* 4.39\n\nv=3.951\ m/s

So, the tangential speed of the ball is 3.951 m/s.

A 10 kg block moving at 10 m/s in a direction 45 degrees above the horizontal. When it has fallen to a point that is 10 m below the initial point measured vertically (without air friction), the block's kinetic energy is closest to

Answers

The block's kinetic energy is closest to 1500 Joules.

Kinetic energy :

The energy is always conserved.

So that, the total kinetic energy will be sum of initial potential energy and kinetic energy during falling.

Given that, mass(m)=10kg, v=10m/s, h=10m,g=10m/s^2

              K.E=(1/2)mv^2 + mgh

              K.E=(1/2)*10*100 + (10*10*10)

              K.E=500 + 1000=1500Joule

The  block's kinetic energy is closest to 1500 Joules.

Learn more about the kinetic energy here:

brainly.com/question/25959744

Answer:

Kinetic energy = 1500 J

Explanation:

The computation of the block's kinetic energy is shown below:

As we know that

Conservation of energy is

PE_i + KE_i = PE_f + KE_f

where,

Initial Potential energy = PE_i = m gh = 10kg× 10m/s^2 × 10m = 1000 J

Initial Kinetic energy = KE_i = (0.5) m V^2 = (0.5) (10 kg) (10 m/s)^2 = 500 J

Final potential energy = PE_f = mgh = 0      

As h = 0 which is at reference line

So

PE_i + KE_i = PE_f + KE_f

Now put these valeus to the above formulas

1000 J + 500 J = 0 + KE_f

After solving this

Kinetic energy = 1500 J

) An electron moving along the x-axis enters a magnetic field. If the electron experiences a magnetic deflection in the -y direction, what is the direction of the magnetic field in this region

Answers

Answer:

- z direction

Explanation:

To find the direction of the magnetic field, you take into account that the magnetic force over a charge, is given by the following cross product:

\vec{F_B}=q\vec{v}\ X\ \vec{B}      (1)

F_B: magnetic force

q: charge of the particle

v: velocity of the charge

B: magnetic field

In this case you have that the electron is moving along x-axis. You can consider this direction as the ^i direction. The electron experiences a magnetic deflection in the -y direction, that is, in the -^j  direction.

By the cross products between unit vectors, you have that:

-^j = ^i X ^k

That is, the cross product between two vectors, one in the +x direction, and another one in the +z direction, generates a vector in the -y direction. However, it is necessary to take into account that the negative charge of the electron change the sign of the result of the cross product, which demands that the second vector is in the -z direction. That is:

-^i X -k^ = ^i X ^k = - ^j

Hence, the direction of the magnetic field is in the -z direction

From her bedroom window a girl drops a water-filled balloon to the ground, 4.77 m below. If the balloon is released from rest, how long is it in the air?

Answers

We need to use the equation x = vt + (1/2)at^2. We know x = 4.77, v = 0, and a = 9.81m/s^2. Plug in the values. 4.77 = (0)t + (1/2)(9.81)t^2 Solve for t. 4.77 = (4.905)t^2 0.972 = t^2 t = (sq.rt)_/0.972 t = 0.985 So it's in the air 0.985 seconds.

5. (Serway 9th ed., 7-3) In 1990, Walter Arfeuille of Belgium lifted a 281.5-kg object through a distance of 17.1 cm using only his teeth. (a) How much work was done on the object by Arfeuille in this lift, assuming the object was lifted at constant speed? (b) What total force was exerted on Arfeuille’s teeth during the lift? (Ans. (a) 472 J; (b) 2.76 kN)

Answers

Para resolver este problema es necesario aplicar los conceptos de Fuerza, dados en la segunda Ley de Newton y el concepto de Trabajo, como expresión de la fuerza necesaria para realizar una actividad en una distancia determinada.

El trabajo se define como

W = F*d

Where,

F = Force

d = Distance

At the same time we have that the Force by second's Newton law is equal to

F = mg

Where,

m = mass

g = Gravitational acceleration

PART A) Using our values and replacing we have that

W = F*d\nW = mg*d\nW=281.5*9.8(17.1*10^(-2)\nW = 471.738 J\approx 472J

PART B) Using Newton's Second law we have that,

F = mg \nF= 281.5*9.8\nF= 2758.7 N \approx 2.76kN

Acetone, a component of some types of fingernail polish, has a boiling point of 56°C. What is its boiling point in units of kelvin? Report your answer to the correct number of significant figures.

Answers

Answer:

The boiling point of Acetone is 329K (in 3 significant figures)

Explanation:

Boiling point of Acetone = 56°C = 56 + 273K = 329K (in 3 significant figures)

Answer: using the formula 0°C + 273.15 = 273.15K the boiling point in units of kelvin to significant figures is 329.15k.

Explanation: The boiling point of a substance ( acetone) is the temperature at which the vapour pressure of the liquid substance equals the pressure surrounding it. The boiling point of acetone serves as it's characteristic physical properties. This is measured in degree Celsius (°C ) which can be converted to units of Fahrenheit or kelvin. To convert degree Celsius to kelvin this formula is used: 0°C + 273.15 = 273.15K . Given that acetone has boiling point of 56°C,from the formula 0°C is substituted for 56°C. This gives us:

56°C + 273.15= 319.15k.

Also,measurements given in Kelvin will always be larger numbers than in Celsius and the Kelvin temperature scale does not use the degree (°) symbol because Kelvin is an absolute scale, based on absolute zero, while the zero on the Celsius scale is based on the properties of water. I hope this helps. Thanks

Other Questions