What is the weight of a 5.0-kilogram object at the surface of Earth?A
5.0 kg
B
25 N
C
49 kg
D
49 N

Answers

Answer 1
Answer:

The weight of a 5.0-kilogram object at the surface of Earth is 49 N. Hence, option (C) is correct.

What are mass and weight?

Mass is a fundamental quantity in physics and the most fundamental attribute of matter. Mass can be defined as the amount of matter contained in a body. Kilogram is the SI unit of mass (kg).

A body's mass does not alter at any time. Only in severe instances where a massive amount of energy is provided or removed from the body.

The force of gravity acting on a body is measured by weight. The weight formula is as follows: w = mg. Because weight is a force, it has the same SI unit as force; the SI unit of weight is Newton (N).

The weight of the  object is = 5.0 × 9.8 N

= 49.0 N.

Hence, option (B) is correct.

Learn more about weight here:

brainly.com/question/10069252

#SPJ2

Answer 2
Answer:

Answer:

49 N (d)

Explanation:

w= mg = 5 kg * 9.8 m/s^2 = 49 N


Related Questions

What is the wavelength of the photons emitted by hydrogen atoms when they undergo n =5 to n =3 transitions?
The actual depth of a shallow pool 1.00 m deep is not the same as the apparent depth seen when you look straight down at the pool from above. How deep (in cm) will it appear to be
How many meters will a car travel if its speed is 45 m/s in an interval of 11 seconds?Question 2 options:A) 450 metersB) 495 metersC) 4.09 metersD) 498 meters
Make the following conversion.56.32 kL = _____ L0.0563200.563205,63256,320
The electric field at the distance of 3.5 meters from an infinite wall of charges is 125 N/C. What is the magnitude of the electric field 1.5 meters from the wall?

How long does it take a wheel that is rotating at 33.3 rpm to speed up to 78.0 rpm if it has an angular acceleration of 2.15 rad/ s 2?

Answers

initial angular speed is given by 33.3 rpm

w_0 = 2\pi (33.3)/(60)

w_0 = 3.49 rad/s

final angular speed is given by 78 rpm

w_f = 2\pi (78)/(60)

w_f = 8.17 rad/s

now by using kinematics we will have

w_f = w_0 + \alpha * t

8.17 = 3.49 + 2.15 * t

t = 2.17 seconds

A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.80 N)k and the corresponding torque about the origin is vector tau = (3.40 N · m)i hat + (2.80 N · m)j + (0.800 N · m)k. Determine Fx.

Answers

Answer:

-4.40

Explanation:

explanation is in attachment

An infant throws 7 g of applesauce at a velocity of 0.5 m/s. All of the applesauce collides with a nearby wall and sticks to it. What is the decrease in kinetic energy of the applesauce?

Answers

Answer:

Δ KE = - 8.75 x 10⁻⁴ J

Explanation:

given,

mass of applesauce = 7 g = 0.007 Kg

initial velocity, u = 0.5 m/s

final velocity, v = 0 m/s

Decrease in kinetic energy = ?

initial kinetic energy

KE_1=(1)/(2)mu^2

KE_1=(1)/(2)* 0.007 * 0.5^2

      KE₁ = 8.75 x 10⁻⁴ J

final kinetic energy

KE_2=(1)/(2)mv^2

KE_2=(1)/(2)* 0.007 * 0^2

      KE₂ =0 J

Decrease in kinetic energy

Δ KE =  KE₂ - KE₁

Δ KE = 0 - 8.75 x 10⁻⁴

Δ KE = - 8.75 x 10⁻⁴ J

decrease in kinetic energy of the applesauce is equal to  8.75 x 10⁻⁴ J

Final answer:

The decrease in kinetic energy of the applesauce, when it hits the wall and stops, is the initial kinetic energy of it. Using the formula of kinetic energy, the decrease is calculated to be 0.000875 Joules.

Explanation:

This question relates to the concept of kinetic energy in physics. Kinetic energy is calculated by the formula 0.5 * mass (kg) * velocity (m/s)^2. So the initial kinetic energy of the applesauce right after being thrown was 0.5 * 0.007 kg * (0.5 m/s)^2 = 0.000875 Joules.

When the applesauce hits the wall and stops, its velocity drops to 0. Thus, its kinetic energy also goes to 0 (because kinetic energy is proportional to the square of velocity).

Therefore, the decrease in kinetic energy is the same as the initial kinetic energy of the applesauce, which is 0.000875 Joules.

Learn more about Kinetic Energy here:

brainly.com/question/33783036

#SPJ3

What is the most important safety rule to remember during lab activities

Answers

To follow instructions

A plane monochromatic electromagnetic wave with wavelength ? = 3 cm, propagates through a vacuum. Its magnetic field is described byB? =(Bxi^+Byj^)cos(kz+?t)

where Bx = 3.3 X 10-6 T, By = 3.9 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively.

1)

What is f, the frequency of this wave?

GHz

2)

What is I, the intensity of this wave?

W/m2

3)

What is Sz, the z-component of the Poynting vector at (x = 0, y = 0, z = 0) at t = 0?

W/m2

4)

What is Ex, the x-component of the electric field at (x = 0, y = 0, z = 0) at t = 0?

V/m

5)

Compare the sign and magnitude of Sz, the z-component of the Poynting vector at (x=y=z=t=0) of the wave described above to the sign and magnitude of SIIz, the z-component of the Poynting vector at (x=y=z=t=0) of another plane monochromatic electromagnetic wave propagating through vaccum described by:

B? =(BIIxi^?BIIyj^)cos(kz??t)

where BIIx = 3.9 X 10-6 T, BIIy = 3.3 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively.

SIIz < 0 and magnitude(SIIz) =/ (does not equal sign) magnitude(Sz)

SIIz < 0 and magnitude(SIIz) = magnitude(Sz)

SIIz > 0 and magnitude(SIIz) =/ (does not equal sign) magnitude(Sz)

SIIz > 0 and magnitude(SIIz) = magnitude(

Answers

Final answer:

The question involves computation of frequency, intensity, Poynting vector and electric field of an electromagnetic wave, and comparison between two such waves. The solutions result in approximately: 10 GHz for frequency, 3.07 x 10^-12 W/m^2 for intensity, 1.3 X 10^-19 W/m^2 for the z-component of Poynting vector, and 1.43 V/m for the electric field. Moreover, the comparison yields that SIIz is less than zero and not equal to Sz in magnitude.

Explanation:

The subject of your question relates to

electromagnetic waves

and their properties such as frequency, intensity, Poynting vector, and the electric field component. These concepts belong to the realm of physics, and more specifically, are topics in the study of electromagnetic theory.

To solve your questions:

  1. The frequency f can be found using the formula: f = c/λ where c is the speed of light in vacuum (~3x10^8 m/s). For λ = 3 cm or 0.03 m, computation yields f ≈ 10^10 Hz or 10 GHz.
  2. The intensity I of an electromagnetic wave in a vacuum can be given by the equation I = 0.5*c*ε0*E^2, where E is the electric field amplitude. To compute I, first, we need to find E which is given by E = c*B, where B is the magnetic field amplitude. Here, B is the square root of (Bx^2 + By^2) resulting in approximately 4.77*10^-6 T. Thus, E ≈ 1.43 V/m and solving for I gives us I ≈ 3.07 x 10^-12 W/m^2.
  3. The z-component of the Poynting vector Sz at a specified point and time is given by Sz = E x H, where H = B/μ0, μ0 represents the permeability of free space. At t = 0, Sz = Ex*Hy - Ey*Hx = Ex*By, resulting in Sz ≈ 1.3 x 10^-19 W/m^2.
  4. The x-component of the electric field at t = 0 Ex≈1.43 V/m.
  5. Finally, comparing Sz of both waves (magnitudes and signs), we find that SIIz < 0 and the magnitude of SIIz does not equal the magnitude of Sz.

Learn more about Electromagnetic Waves here:

brainly.com/question/31660548

#SPJ12

Final answer:

The frequency of the wave is 10 GHz. While we can't expressly calculate the intesity, Sz, and Ex without more information, we can note that if the signs of Bx and By are swapped in a new wave, the Poynting vector would be flipped, hence SIIz would be negative and of equal magnitude to Sz.

Explanation:

An electromagnetic wave propagating through vacuum is described by certain electromagnetic fields which are associated with frequency, intensity, and Poynting vector which indicates the direction of energy flow. These can be calculated using certain formulas derived from wave equations.

Frequency can be acquired from the wavelength (λ) with the formula: f = c/λ, where c is the speed of light in vacuum. Using given λ = 3 cm, we get f = 10^10 Hz or 10 GHz.

The total Intensity (I) can be calculated as the average of the sum of the intensities in the x and y direction, given by: 1/2 ε_0 c E^2, where ε_0 is the permittivity of free-space and E is the electric field amplitude. However, more information might be needed to calculate this value. Similarly, without further information, we cannot calculate the exact values of Sz and Ex.

When comparing Sz and SIIz, if the signs of Bx and By are swapped in a new wave, this would flip the direction of the Poynting vector (since it is related to E × B), hence SIIz < 0 and its magnitude would still equal to Sz because the magnitudes of Bx and By do not change.

Learn more about Electromagnetic wave properties here:

brainly.com/question/27219042

#SPJ11

A weather balloon is designed to expand to a maximum radius of 24 m at its working altitude, where the air pressure is 0.030 atm and the temperature is 200 K. If the balloon is filled at atmospheric pressure and 349 K, what is its radius at liftoff

Answers

Answer:

Radius at liftoff 8.98 m

Explanation:

At the working altitude;

maximum radius = 24 m

air pressure = 0.030 atm

air temperature = 200 K

At liftoff;

temperature = 349 K

pressure = 1 atm

radius = ?

First, we assume balloon is spherical in nature,

and that the working gas obeys the gas laws.

from the radius, we can find the volume of the balloon at working atmosphere.

Volume of a sphere = (4)/(3) \pi r^(3)

volume of balloon = (4)/(3) x 3.142 x 24^(3) = 57913.34 m^3

using the gas equation,

(P1V1)/(T1) = (P2V2)/(T2)

The subscript 1 indicates the properties of the gas at working altitude, and the subscript 2 indicates properties of the gas at liftoff.

imputing values, we have

(0.03*57913.34)/(200) = (1*V2)/(349)

0.03 x 57913.34 x 349 = 200V2

V2 = 606352.67/200 = 3031.76 m^3  this is the volume occupied by the gas in the balloon at liftoff.

from the formula volume of a sphere,

V =  (4)/(3) \pi r^(3) =  (4)/(3) x 3.142 x r^(3) = 3031.76

4.19r^(3)  = 3031.76

r^(3) = 3031.76/4.19  

radius r of the balloon on liftoff = \sqrt[3]{723.57} = 8.98 m