OFFERING 60 POINTS IF YOU CAN SHOW THE WORK!!!!A 1000 kg roller coaster begins on a 10 m tall hill with an initial velocity of 6m/s and travels down before traveling up a second hill. As the coaster moves from its initial height to its lowest position, 1700J of energy is transformed to thermal energy by friction.
coconutman2015 avatar

Answers

Answer 1
Answer:

Answer; 10.6 i think

Explanation:

Answer 2
Answer:

(a) At the top of the hill, the coaster has total energy (potential and kinetic)

E = (1000 kg) g (10 m) + 1/2 (1000 kg) (6 m/s)² = 116,000 J

As it reaches its lowest position, its potential energy is converted to kinetic energy, and some is lost to friction, making its speed v such that

1/2 (1000 kg) v ² = 116,000 J - 1700 J = 114,300 J

===>   v ≈ 15.2 m/s

If no energy is lost to friction as the coaster makes its way up the second hill, all of its kinetic energy would be converted to potential energy at the maximum possible height H.

1/2 (1000 kg) (15.2 m/s)² = (1000 kg) gH

===>   H11.7 m

(b) At the top of the second hill with minimum height h, and with maximum speed 4.6 m/s, the coaster has energy

E = P + K = (1000 kg) gh + 1/2 (1000 kg) (4.6 m/s)²

Assuming friction isn't a factor again, the energy here should match the energy at the lowest point in part (a), 114,300 J.

(1000 kg) g h + 1/2 (1000 kg) (4.6 m/s)² = 114,300 J

===>   h10.6 m


Related Questions

Describe the objects that make up Saturn's rings. Your answer should include the range of sizes of objects in the rings, and the composition of the at least the outer layers of the objects.
Acetone, a component of some types of fingernail polish, has a boiling point of 56°C. What is its boiling point in units of kelvin? Report your answer to the correct number of significant figures.
when a ball is dropped off a cliff in free fall, it has an acceleration of 9.8 m/s^2. what is its acceleration as it gets closer to the ground
What is the weight on Earth of an object with mass 45 kg. Hint gravity = 10 N/kg *1 point45 N450 N450 kg10N
A single-turn circular loop of wire of radius 5.0 cm lies in a plane perpendicular to a spatially uniform magnetic field. During a 0.02500.0250-\text{s}s time interval, the magnitude of the field increases uniformly from 200 to 300 mT. Determine the magnitude of the emf induced in the loop

Which describes one feature of the image formed by a convex mirror?????

Answers

Answer:

The image formed by a convex mirror will always have its smaller than the size of the object no matter what the position of the object.

Explanation:

The image formed by a convex mirror will always have its smaller than the size of the object no matter what the position of the object.

Also notice that convex mirror always makes virtual images.

Another feature of the convex mirror is that an upright image is always formed by the convex mirror.

An important mirror formula to remember which is applicable for both convex and mirrors

  • 1/f= 1/u + 1/v

Here:

'u' is an object which gets placed in front of a spherical mirror of focal

length 'f' and image 'u' is formed by the mirror.

Answer:

right side up

Explanation:

One end of a horizontal spring with force constant 130.0 Ni'm is attached to a vertical wall. A 4.00-kg block sitting on the floor is placed against the spring. The coefficient of kinetic friction between the block and the floor is uk = 0.400. You apply a constant force F to the block. F has magnitude F = 82.0 N and is directed toward the wall. At the instant that the spring is com-pressed 80.0 cm, what arc (a) the speed of the block, and (b) the magnitude and direction of the block's acceleration?

Answers

Answer:

Explanation:

When the spring is compressed by .80 m , restoring force by spring on block

= 130 x .80

= 104 N , acting away from wall

External force = 82 N , acting towards wall

Force of friction acting towards wall = μmg

= .4 x 4 x 9.8

= 15.68 N

Net force away from wall

= 104 -15.68 - 82

= 6.32 N

Acceleration

= 6.32 / 4

= 1.58 m / s²

It will be away from wall

Energy released by compressed spring = 1/2 k x²

= .5 x 130 x .8²

= 41.6 J

Energy lost in friction

= μmg x  .8

= .4 x 4 x 9.8 x .8

= 12.544 J

Energy available to block

= 41.6 - 12.544 J

= 29 J

Kinetic energy of block = 29

1/2 x 4 x v² = 29

v = 3.8 m / s

This will b speed of block as soon as spring relaxes. (x = 0 )

A heavy object and a light object are dropped from the same height. If we neglect air resistance, which will hit the ground first?

Answers

Answer:

None, both objects will hit ground at the same time.

Explanation:

  • Assuming no air resistance present, and that both objects start from rest, we can apply the following kinematic equation for the vertical displacement:

        \Delta h = (1)/(2)*g*t^(2)  (1)

  • As the left side in (1) is the same for both objects, the right side will be the same also.
  • Since g is constant close to the surface of the Earth, it's also the same for both objects.
  • So, the time t must be the same for both objects also.

Two particles, one with charge −7.97×10−6 C and the other with charge 6.91×10−6 C, are 0.0359 m apart. What is the magnitude of the force that one particle exerts on the other?

Answers

Answer:

-384.22N

Explanation:

From Coulomb's law;

F= Kq1q2/r^2

Where;

K= constant of Coulomb's law = 9 ×10^9 Nm^2C-2

q1 and q2 = magnitudes of the both charges

r= distance of separation

F= 9 ×10^9 × −7.97×10^−6 × 6.91×10^−6/(0.0359)^2

F= -495.65 × 10^-3/ 1.29 × 10^-3

F= -384.22N

Which statement best describes how the first quatrain relates to the second quatrain? The first shows the beloved’s actions; the second describes how she imitates them. Both the first and the second show the actions of the speaker and the beloved. The first shows the speaker’s actions; the second shows the beloved’s opposition to them. The first shows the speaker’s sadness; the second shows the beloved’s anger.

Answers

Answer: the first shows the speakers actions; the second shows the beloveds opposition to them

Explanation:

Carol is farsighted ( presbyopia) and cannot see objects clearly that are closer to her eyes than about meter. She sees objects clearly with a relaxed eye when they are distant. What is the refractive power of reading glasses that would allow her to read a book 50 cm away with a relaxed eye

Answers

Answer:

1.0 dioptres

Explanation:

Farsightedness is an eye defect in which a person can see far objects clearly but not near objects. That implies that the patients' near point is farther than 25cm which is the normal least distance of distinct vision.

Farsightedness results from the eyeball being too long or the crystalline lens not being sufficiently converging.

Carol is farsighted with a near point of about a meter (100cm). We desire to make a lens to enable her near point be reduced to about 50cm. The focal length and power of this lens is calculated in the image attached.

The power of a lens is the inverse of its focal length in meters hence the 100 in the formula for power of the lens.

Answer:

+1.00 diopter

Explanation:

The power of a lens can be described simply as the reciprocal of the focal length of the lens measured in meters.

But f is unknown, hence we look for the focal length with the formula

1/f = 1/u + 1/v

where u is former near point = 100cm

v is the new intended near point = 50cm

1/f = 1/50 - 1/100

1/f = 1/100

f = 100 cm

Hence we get Power (D) = 1/f

where f = focal length of the lens in meter

From the question, the focal length of the lens = 100cm = 1m

Hence D = 1/1

D = +1.00

Hence the refractive power of the reading glasses that would allow Carol to read a book 50cm away from the relaxed eye will be +1.00 diopters.

Other Questions