Consider the titration of 30 mL of 0.030 M NH3 with 0.025 M HCl. Calculate the pH after the following volumes of titrant have been added: a) 0 mL; b) 10 mL; c) 20 mL; d)35 mL; e) 36 mL; f) 37 mL.

Answers

Answer 1
Answer:

The pH of the solution in the titration of 30 mL of 0.030 M NH₃ with 0.025 M HCl, is:

a) pH = 10.86

b) pH = 9.66

c) pH = 9.15

d) pH = 7.70

e) pH = 5.56

f) pH = 3.43          

     

Calculating the pH

a) 0 mL        

Initially, the pH of the solution is given by the dissociation of NH₃ in water.  

NH₃ + H₂O ⇄ NH₄⁺ + OH⁻     (1)

The constant of the above reaction is:

Kb = ([NH_(4)^(+)][OH^(-)])/([NH_(3)]) = 1.76\cdot 10^(-5)   (2)

At the equilibrium, we have:  

   NH₃    +    H₂O   ⇄   NH₄⁺    +    OH⁻     (3)  

0.030 M - x                      x               x

1.76\cdot 10^(-5)*(0.030 - x) - x^(2) = 0

After solving for x and taking the positive value:

x = 7.18x10⁻⁴ = [OH⁻]  

Now, we can calculate the pH of the solution as follows:

pH = 14 - pOH = 14 + log(7.18\cdot 10^(-4)) = 10.86

Hence, the initial pH is 10.86.

   

b) 10 mL

After the addition of HCl, the following reaction takes place:

NH₃ + HCl ⇄ NH₄⁺ + Cl⁻  (4)  

We can calculate the pH of the solution from the equilibrium reaction (3).            

1.76\cdot 10^(-5)(Cb - x) - (Ca + x)*x = 0 (5)  

Finding the number of moles of NH₃ and NH₄⁺

The number of moles of NH₃ (nb) and NH₄⁺ (na) are given by:

n_(b) = n_(i) - n_(HCl)     (6)

n_(b) = 0.030 mol/L*0.030 L - 0.025 mol/L*0.010 L = 6.5\cdot 10^(-4) moles          

n_(a) = n_(HCl)   (7)

n_(a) = 0.025 mol/L*0.010 L = 2.5 \cdot 10^(-4) moles

Calculating the concentrations of NH₃ and NH₄⁺

The concentrations are given by:

Cb = (6.5\cdot 10^(-4) moles)/((0.030 L + 0.010 L)) = 0.0163 M   (8)

Ca = (2.5 \cdot 10^(-4) mole)/((0.030 L + 0.010 L)) = 6.25 \cdot 10^(-3) M      (9)

Calculating the pH

After entering the values of Ca and Cb into equation (5) and solving for x, we have:  

1.76\cdot 10^(-5)(0.0163 - x) - (6.25 \cdot 10^(-3) + x)*x = 0

x = 4.54x10⁻⁵ = [OH⁻]

Then, the pH is:

pH = 14 + log(4.54\cdot 10^(-5)) = 9.66

Hence, the pH is 9.66.

c) 20 mL  

We can find the pH of the solution from the reaction of equilibrium (3).

 

Calculating the concentrations of NH₃ and NH₄⁺

The concentrations are (eq 8 and 9):

Cb = (0.030 mol/L*0.030 L - 0.025 mol/L*0.020 L)/((0.030 L + 0.020 L)) = 8.0\cdot 10^(-3) M    

Ca = (0.025 mol/L*0.020 L)/((0.030 L + 0.020 L)) = 0.01 M    

Calculating the pH  

After solving the equation (5) for x, we have:

1.76\cdot 10^(-5)(8.0\cdot 10^(-3) - x) - (0.01 + x)*x = 0

x = 1.40x10⁻⁵ = [OH⁻]

Then, the pH is:  

pH = 14 + log(1.40\cdot 10^(-5)) = 9.15

So, the pH is 9.15.

d) 35 mL

We can find the pH of the solution from reaction (3).

 

Calculating the concentrations of NH₃ and NH₄⁺

Cb = (0.030 mol/L*0.030 L - 0.025 mol/L*0.035 L)/((0.030 L + 0.035 L)) = 3.85\cdot 10^(-4) M      

Ca = (0.025 mol/L*0.035 L)/((0.030 L + 0.035 L)) = 0.0135 M      

Calculating the pH  

After solving the equation (5) for x, we have:

1.76\cdot 10^(-5)(3.85\cdot 10^(-4) - x) - (0.0135 + x)*x = 0

x = 5.013x10⁻⁷ = [OH⁻]      

Then, the pH is:  

pH = 14 + log(5.013\cdot 10^(-7)) = 7.70  

So, the pH is 7.70.

e) 36 mL  

Finding the number of moles of NH₃ and NH₄⁺

n_(b) = 0.030 mol/L*0.030 L - 0.025 mol/L*0.036 L = 0    

n_(a) = 0.025 mol/L*0.036 L = 9.0 \cdot 10^(-4) moles

                                   

Since all the NH₃ reacts with the HCl added, the pH of the solution is given by the dissociation reaction of the NH₄⁺ produced in water.

At the equilibrium, we have:                

NH₄⁺    +    H₂O   ⇄   NH₃    +    H₃O⁺

Ca - x                             x               x

Ka = (x^(2))/(Ca - x)  

Ka(Ca - x) - x^(2) = 0   (10)          

 

Calculating the acid constant of NH₄⁺

We can find the acid constant as follows:

Kw = Ka*Kb

Where Kw is the constant of water = 10⁻¹⁴

Ka = (1\cdot 10^(-14))/(1.76 \cdot 10^(-5)) = 5.68 \cdot 10^(-10)  

Calculating the pH  

The concentration of NH₄⁺ is:

Ca = (9.0 \cdot 10^(-4) moles)/((0.030 L + 0.036 L)) = 0.0136 M      

After solving the equation (10) for x, we have:

x = 2.78x10⁻⁶ = [H₃O⁺]

Then, the pH is:  

pH = -log(H_(3)O^(+)) = -log(2.78\cdot 10^(-6)) = 5.56

Hence, the pH is 5.56.

f) 37 mL

Now, the pH is given by the concentration of HCl that remain in solution after reacting with NH₃ (HCl is in excess).

Calculating the concentration of HCl  

C_(HCl) = (0.025 mol/L*0.037 L - 0.030 mol/L*0.030 L)/((0.030 L + 0.037 L)) = 3.73 \cdot 10^(-4) M = [H_(3)O^(+)]      

Calculating the pH  

pH = -log(H_(3)O^(+)) = -log(3.73 \cdot 10^(-4)) = 3.43

Therefore, the pH is 3.43.

   

Find more about pH here:

brainly.com/question/491373

 

I hope it helps you!  

Answer 2
Answer:

Answer:

a)10.87

b)9.66

c)9.15

d)7.71

e) 5.56

f) 3.43

Explanation:

tep 1: Data given

Volume of 0.030 M NH3 solution = 30 mL = 0.030 L

Molarity of the HCl solution = 0.025 M

Step 2: Adding 0 mL of HCl

The reaction:    NH3 + H2O ⇔ NH4+ + OH-

The initial concentration:  

[NH3] = 0.030M    [NH4+] = 0M    [OH-] = OM

The concentration at the equilibrium:

[NH3] = 0.030 - XM

[NH4+] = [OH-] = XM

Kb = ([NH4+][OH-])/[NH3]

1.8*10^-5 = x² / 0.030-x

1.8*10^-5 = x² / 0.030

x = 7.35 * 10^-4 = [OH-]

pOH = -log [7.35 * 10^-4]

pOH = 3.13

pH = 14-3.13 = 10.87

Step 3: After adding 10 mL of HCl

The reaction:

NH3 + HCl ⇔ NH4+ + Cl-

NH3 + H3O+ ⇔ NH4+ + H2O

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.010 L = 0.00025 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.00025 =0.00065 moles

Moles HCl = 0

Moles NH4+ = 0.00025 moles

Concentration at the equilibrium:

[NH3]= 0.00065 moles / 0.040 L = 0.01625M

[NH4+] = 0.00625 M

pOH = pKb + log [NH4+]/[NH3]

pOH =  4.75 + log (0.00625/0.01625)

pOH = 4.34

pH = 9.66

Step 3: Adding 20 mL of HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.020 L = 0.00050 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.00050 =0.00040 moles

Moles HCl = 0

Moles NH4+ = 0.00050 moles

Concentration at the equilibrium:

[NH3]= 0.00040 moles / 0.050 L = 0.008M

[NH4+] = 0.01 M

pOH = pKb + log [NH4+]/[NH3]

pOH =  4.75 + log (0.01/0.008)

pOH = 4.85

pH = 14 - 4.85 = 9.15

Step 4: Adding 35 mL of HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.035 L = 0.000875 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.000875 =0.000025 moles

Moles HCl = 0

Moles NH4+ = 0.000875 moles

Concentration at the equilibrium:

[NH3]= 0.000025 moles / 0.065 L = 3.85*10^-4M

[NH4+] = 0.000875 M / 0.065 L = 0.0135 M

pOH = pKb + log [NH4+]/[NH3]

pOH =  4.75 + log (0.0135/3.85*10^-4)

pOH = 6.29

pH = 14 - 6.29 = 7.71

Step 5: adding 36 mL HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.036 L = 0.0009 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.0009 =0 moles

Moles HCl = 0

Moles NH4+ = 0.0009 moles

[NH4+] = 0.0009 moles / 0.066 L = 0.0136 M

Kw = Ka * Kb

Ka = 10^-14 / 1.8*10^-5

Ka = 5.6 * 10^-10

Ka = [NH3][H3O+] / [NH4+]

Ka =5.6 * 10^-10 =  x² / 0.0136

x = 2.76 * 10^-6 = [H3O+]

pH = -log(2.76 * 10^-6)

pH = 5.56

Step 6: Adding 37 mL of HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.037 L = 0.000925 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.000925 =0 moles

Moles HCl = 0.000025 moles

Concentration of HCl = 0.000025 moles / 0.067 L = 3.73 * 10^-4 M

pH = -log 3.73*10^-4= 3.43


Related Questions

Which of the following species is amphoteric? A)HCO32- B) HF O C) NH4+ D) P042-
Station 9: Iodine ______________ g I2 Perform the calculations in the space between each lettered problem. Enter the answer with correct significant figures and units on the line provided.
Assuming binding is fast relative to subsequent catalytic steps, what relative effect does substitute the various active site residues have on catalysis versus substrate-binding? The various substitutions affecta. substrate-binding more than catalytic turnover. b. catalytic turnover more than substrate binding. c. substrate binding, but not catalytic turnover. d. catalytic turnover, but not substrate binding.
For the experiments from 1-3 with the same temperature change, what other parameters are the same at the initial reaction conditions?a. mmol HCl total mL solution b. mmol NaOH Initial concentration of NaOH c. mL H2O Initial concentration of HCl
How many grams of solid sodium cyanide should be added to 1.00 L of a 0.119 M hydrocyanic acid solution to prepare a buffer with a pH of 8.809

The Earth can gain or lose matter. True False​

Answers

Answer:

True

Explanation:

According to some calculations, the Earth is losing 50,000 metric tons of mass every single year, even though an extra 40,000 metric tons of space dust converge onto the Earth's gravity well, it's still losing weight.

Answer:

true

Explanation:

Sulfur dioxide and oxygen react to form sulfur trioxide during one of the key steps in sulfuric acid synthesis. An industrial chemist studying this reaction fills a 50.0L tank with 14. mol of sulfur dioxide gas and 2.6 mol of oxygen gas, and when the mixture has come to equilibrium measures the amount of sulfur trioxide gas to be 1.6 mol. Calculate the concentration equilibrium constant for the reaction of sulfur dioxide and oxygen at the final temperature of the mixture. Round your answer to 2 significant digits.

Answers

Answer:

Explanation:

From the given information:

The equation for the reaction can be represented as:

2SO_2 + O_2 \to 2SO_3

The I.C.E table can be represented as:

                     2SO₂              O₂                   2SO₃

Initial:             14                  2.6                     0

Change:        -2x                -x                      +2x

Equilibrium:   14 - 2x          2.6 - x                2x

However, Since the amount of sulfur trioxide gas to be 1.6 mol.

SO₃ = 2x,

then x = 1.6/2

x = 0.8 mol

For 2SO₂; we have 14 - 2x

= 14 - 2(0.8)

= 14 - 1.6

= 12.4 mol

For O₂; we have 2.6 - x

= 2.6 - 1.6

= 1.0 mol

Thus;

[SO₂] = moles / volume = ( 12.4/50) = 0.248 M ,

[O₂] = 1/50 = 0.02 M ,  

[SO₃] = 1.6/50 = 0.032 M

Kc = [SO₃]² / [SO₂]² [O₂]

= ( 0.032²) / ( 0.248² x 0.02)

= 0.8325

Recall that; the equilibrium constant for the reaction 2SO_2 + O_2 \to 2SO_3 = 0.8325;

If we want to find:

SO_2 + (1)/(2)O_2 \to SO_3

Then:

K_c = (0.8325)^(1/2)

\mathbf{K_c = 0.912}

Since no temperature is given to use in the question, it will be impossible to find the final temperature of the mixture.

How many mL of 0.100 M NaOH are needed to neutralize 50.00 mL of a 0.150 M solution of CH3CO2H, a monoprotic acid? How many mL of 0.100 M NaOH are needed to neutralize 50.00 mL of a 0.150 M solution of CH3CO2H, a monoprotic acid? a. 37.50 mL
b. 50.00 mL
c. 75.00 mL
d. 100.00 mL
e. 25.00 mL

Answers

Answer:

We need 75 mL of 0.1 M NaOH ( Option C)

Explanation:

Step 1: Data given

Molarity of NaOH solution = 0.100 M

volume of 0.150 M CH3COOH = 50.00 mL = 0.05 L

Step 2: The balanced equation

CH3COOH + NaOH → CH3COONa + H2O

Step 3: Calculate moles of CH3COOH

Moles CH3COOH = Molarity * volume

Moles CH3COOH = 0.150 M * 0.05 L

Moles CH3COOH =  0.0075 moles

Step 4: Calculate moles of NaOH

For 1 mol of CH3COOH we need 1 mol of NaOH

For 0.0075 mol CH3COOH we need 0.0075 mole of NaOH

Step 5: Calculate volume of NaOH

volume = moles / molarity

volume = 0.0075 moles / 0.100 M

Volume = 0.075 L = 75 mL

We need 75 mL of 0.1 M NaOH

Draw the Lewis structure for XeCl2 and answer the following questions.How many valence electrons are present in this compound?
How many bonding electrons are present in this compound?
How many lone pair (non-bonding) electrons are present in this compound?

Answers

Answer:

Valence electrons in XeCl2 = 8 + 7 + 7 = 22.

Bonding electrons = 4.

Nonbonding electrons = 18.

Explanation:

Hello.

In this case, you can see the Lewis structure on the attached picture, in which you can see that there are since xenon has 8 valance electrons and each chlorine has 7 valence electrons, the total amount of valence electrons is:

Valence electrons in XeCl2 = 8 + 7 + 7 = 22.

Moreover, since each chlorine atom is bonding with one of the eight electrons of xenon (Lewis structure), we can see there are 4 bonding electrons.

Finally, since there are six nonbonding electrons per chlorine atom and six nonbonding electrons in xenon, the overall nonbonding electrons are:

Nonbonding electrons in XeCl2 = 6 + 6 + 6 = 18.

Regards.

HELP if water vapor condense on a cold surface is the initial and final energy thermal, phase, or chemical?

Answers

My answer to this great question would be thermal

You need to prepare a solution with a specific concentration of Na+Na+ ions; however, someone used the end of the stock solution of NaClNaCl, and there isn’t any NaClNaCl to be found in the lab. You do, however, have some Na2SO4Na2SO4. Can you substitute the same number of grams of Na2SO4Na2SO4 for the NaClNaCl in a solution? Why or why not?

Answers

Explanation:

Ionic equation

NaCl(aq) --> Na+(aq) + Cl-(aq)

Na2SO4(aq) --> 2Na+(aq) + SO4^2-(aq)

In NaCl solution, 1 mole of Na+ is dissociated in 1 liter of solution while in Na2SO4, 2 moles of Na+ is dissociated in 1 liter of solution.

Molecular weight of NA2SO4 = (23*2) + 32 + (16*4)

= 142 g/mol

Molecular weight of NaCl = 23 + 35.5

= 58.5 g/mol

Masses

% Mass of NA+ in Na2SO4 = mass of Na+/total mass of Na2SO4 * 100

= 46/142 * 100

= 32.4%

% Mass of NA+ in NaCl = mass of Na+/total mass of NaCl * 100

= 23/58.5 * 100

= 39.3%

Therefore, the % mass of Na+ in NaCl and Na2SO4 are different so it cannot be used.

Final answer:

You cannot substitute Na2SO4 directly for NaCl based on mass since they have different molar masses. The same mass of Na2SO4 will provide more Na+ ions than NaCl, leading to a change in the Na+ ion concentration.

Explanation:

No, you cannot substitute the same number of grams of Na2SO4 for the NaCl in a solution. This is because NaCl and Na2SO4 have different molar masses and therefore different numbers of moles per gram. The concentration of a solution is determined by the number of moles of solute per unit volume of solvent, not the mass. Hence, using the same mass of a different compound would alter the concentration of Na+ ions in the solution.

For instance, if one mole of NaCl gives us one mole of Na+, one mole of Na2SO4 will provide two moles of Na+. In other words, the same mass of Na2SO4 contains more Na+ ions than the same mass of NaCl. So using the same mass of Na2SO4 in place of NaCl will result in a solution with a higher Na+ ion concentration.

Learn more about Chemical Substitution here:

brainly.com/question/31649818

#SPJ3