Why must the Ojibwe people pay close attention to the seasons? a.) they must be ready to move to a new place where they can hunt

b.) they only fish during the warmest times of the day

c. they must know the right time of year for Gathering certain foods

d.) they still catch walleye with the steering method ​
why must the Ojibwe people pay close attention to the - 1

Answers

Answer 1
Answer:

The Ojibwe people pay close attention to the seasons in order to know right

time of year for gathering certain foods.

The Ojibwe mostly hunt for fishes through the use of various techniques

such as:

  • Fishing at night
  • Use of flashlight

Why do they hunt for Fishes at night?

They hunt for fishes at night because they are usually docile during that time

which enables them to catch them easily as against during the day when

they are much active.

Read more about Ojibwe people here brainly.com/question/24963033

Answer 2
Answer:

Answer:C. They must know the right time of year for gathering certain foods

Explanation:

I got it correct


Related Questions

PLEASE HELP IT'S DUE IN LIKE 2 MINUTES
A small charged sphere is attached to a thread and placed in an electric field. The other end of the thread is anchored so that when placed in the field the sphere is in a static situation (all the forces on the sphere cancel). If the thread is horizontal, find the magnitude and direction of the electric field. The sphere has a mass of 0.018 kg and contains a charge of + 6.80 x 103 C. The tension in the thread is 6.57 x 10-2 N. Show your work and/or explain your reasoning. (20 pts)
Sometimes, in an intense battle, gunfire is so intense that bullets from opposite sides collide in midair. Suppose that one (with mass M = 5.12 g moving to the right at a speed V = [08]____________________ m/s directed 21.3° above the horizontal) collides and fuses with another with mass m = 3.05 g moving to the left at a speed v = 282 m/s directed 15.4° above the horizontal. a. What is the magnitude of their common velocity (m/s) immediately after the collision? b. What is the direction of their common velocity immediately after the collision? (Measure this angle in degrees from the horizontal.) c. What fraction of the original kinetic energy was lost in the collision?
Ball 1 (1.5 kg) moves to the right at 2 m/s and ball 2 (2.5 kg) moves to the left at 1.5 m/s. The balls stick together after collision. What is the speed and direction of ball 2 after the collision?
On a trip, you notice that a 3.50-kg bag of ice lasts an average of one day in your cooler. What is the average power in watts entering the ice if it starts at 0ºC and completely melts to 0ºC water in exactly one day 1 watt = 1 joule/second (1 W = 1 J/s) ?

Three resistors are connected in series across a battery. The value of each resistance and its maximum power rating are as follows: 6.7Ω and 15.9 W, 30.4Ω and 9.12 W, and 16.3Ω and 12.3 W. (a) What is the greatest voltage that the battery can have without one of the resistors burning up? (b) How much power does the battery deliver to the circuit in (a)?

Answers

Answer:

a) greatest voltage = 29.25 V

b) power = 16 W

Explanation:

The total resistance R of the three resistors in series is:

R = (6.7 + 30.4 + 16.3) \Omega = 53.4 \Omega  

a) The greatest current I is the one that will burn the resistor with lower power rating, which is 9.12 W:

P_(max) = I_(max)^2 R = I_(max)^2 30.4\Omega = 9.12W\nI_(max) = 0.54 A

The voltage is:

V_(max)=IR = 0.54*53.4V= 29.25 V

b) When the current is 0.54 A, the power is:

P = RI^2=53.4*0.3 W = 16W

An F-35 stealth jet takes off from the aircraft carrier Ronald Reagan. Starting from rest, the jet accelerated with a constant acceleration of 55.3 m/s2 along a straight line on the deck. What is the displacement of the jet when it reaches a speed of 181 m/s?

Answers

Answer:

When the jet reaches a speed of 181 m/s, its displacement is 296 m.

Explanation:

Hi there!

The equation of position and velocity of an object traveling with constant acceleration along a straight line are the following:

x = x0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

Where:

x = position of the object at time t.

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

v = velocity of the object at time t.

If we place the origin of the frame of reference at the point where the jet starts moving, then, x0 = 0. Since the jet starts from rest, v0 is also zero. Then the equations get reduced to the following:

x =  1/2 · a · t²

v = a · t

We know the acceleration and the final velocity of the jet. So, using the equation of velocity, we can find the time it takes the jet to reach that velocity. Then, we can calculate the position of the jet at that time. Since the initial position is zero, the final position of the jet will be equal to the displacement (because displacement = final position - initial position).

v = a · t

v/a = t

181 m/s / 55.3 m/s² = t

t = 3.27 s

The final position of the jet will be:

x =  1/2 · a · t²

x = 1/2 · 55.3 m/s² · (3.27 s)²

x = 296 m

When the jet reaches a speed of 181 m/s, its displacement is 296 m.

The displacement of the F-35 jet when it reaches a speed of 181 m/s is 16515 m.

To find displacement using constant acceleration,

we can use the following equation:

displacement = (final velocity)^2 - (initial velocity)^2 / 2 * acceleration.

In this case, the initial velocity is 0 m/s and the final velocity is 181 m/s.

The acceleration is given as 55.3 m/s^2.

Plugging in these values, we get:

displacement = (181)^2 - (0)^2 / 2 * 55.3 = 16515 m.

The displacement of the F-35 jet when it reaches a speed of 181 m/s is 16515 m.

Learn more about displacement here:

brainly.com/question/33459975

#SPJ3

An object propelled upwards with an acceleration of 2.0 m / s ^ 2 is launched from rest. After 6 seconds the fuel runs out. Determine the speed at this time and the maximum height at which it reaches.

Answers

Answer:43.34 m

Explanation:

Given

acceleration(a)=2 m/s^2

Initial Velocity(u)=0 m/s

After 6 s fuel runs out

Velocity after 6 s

v=u+at

v=0+2* 6=12 m/s

After this object will start moving under gravity

height reached in first 6 s

s=ut+(at^2)/(2)

s=0+(2* 6^2)/(2)

s=36 m

After fuel run out distance traveled in upward direction is

v^2-u^2=2as_0

here v=0

u=12 m/s

a=9.8 m/s^2

0-12^2=2(-9.8)(s)

s_0=(144)/(2* 9.8)=7.34 m

s+s_0=36+7.34=43.34 m

A conveyor belt is used to move sand from one place to another in a factory. The conveyor is tilted at an angle of 18° above the horizontal and the sand is moved without slipping at the rate of 2 m/s. The sand is collected in a big drum 5 m below the end of the conveyor belt. Determine the horizontal distance between the end of the conveyor belt and the middle of the collecting drum.

Answers

The motion of sand is due to the movement of conveyor belt. The horizontal distance between the end of the conveyor belt and the middle of the collecting drum is 2.044 meters.

What is equation of motion?

The equation of motion is the relation between the distance, velocity, acceleration and time of a moving body.

The second equation of the motion for distance can be given as,

y=ut+(2)/(2)gt^2

Here, u is the initial body, g is the acceleration of the body due to gravity and t is the time taken by it.


Given information-

The conveyor is tilted at an angle of 18° above the horizontal.

The Sand is moved without slipping at the rate of 2 m/s.

The sand is collected in a big drum 5 m below the end of the conveyor belt.

The horizontal component of the velocity is given as,

v_y=2\cos 18

The vertical component of the velocity is given as,

v_y=2\sin18

Put the value in the above equation as,

y-y_0=v_yt+(1)/(2)gt^2

0-5=2\sin18 (t)+(1)/(2)*9.8\tiems t^2\nt=1.075\rm sec

The horizontal distance between the end of the conveyor belt and the middle of the collecting drum is,

d=v_xt\nd=2\cos18*1.075\nd=2.044\rm m

Thus, the horizontal distance between the end of the conveyor belt and the middle of the collecting drum is 2.044 meters.

Learn more about the equation of motion here;

brainly.com/question/13763238

Answer:

x = 2.044 m

Explanation:

given data

initial vertical component of velocity = Vy = 2sin18

initial horizontal component of velocity = Vx = 2cos18

distance from the ground yo = 5m

ground distance y = 0

from equation of motion

y = yo+ V_y t +(1)/(2)gt^2

0 = 5 + 2sin18+ (1)/(2)*9.8t^2

solving for t

t = 1.075 sec

for horizontal motion

x = V_x t

x = 2cos18*1.075

x = 2.044 m

A bug flying horizontally at 1.7 m/s collides and sticks to the end of a uniform stick hanging vertically from its other end. After the impact, the stick swings out to a maximum angle of 7.0° from the vertical before rotating back. If the mass of the stick is 16 times that of the bug, calculate the length of the stick (in m).

Answers

Answer:12.11 m

Explanation:

Given

Bug speed =1.7 m/s

Let mass of bug is m

mass of rod 16m

maximum angle turned by rod is 7^{\circ}[/tex]

From Energy conservation

kinetic energy of bug =Gain in potential energy of rod

(1)/(2)mv^2=16mgL(1-cos\theta )

L=(1.7^2)/(2* 16(1-cos7))

L=12.11 m

How can socialism
impact populations?

Answers

Answer:

it represents a fundamental difference. (more info below)

Explanation:

Production is incessantly developing and expanding in socialist countries, and employment is guaranteed for the entire productive population. Consequently, the relative overpopulation problem has been eliminated. This represents the fundamental difference between socialism's demographic law and capitalism's law.

hope this helped!

It represents a fundamental difference by gaining friends and losing friends or gaining jobs and losing jobs etc