What are the three structural components of a nucleotide? A. A carboxyl, a sugar, and a phosphate B. A phosphate, an amino acid, and a carboxyl C. An amino acid, a carboxyl, and a phosphate D. A sugar, a phosphate, and a nitrogenous base E. A nitrogenous base, an amino acid, and a sugar

Answers

Answer 1
Answer: d. a sugar, a phosphate, and a nitrogen base
Answer 2
Answer:

Answer:

a sugar, a phosphate group, and a nitrogenous base

Explanation:

did the study island


Related Questions

Describe how the types of vegetation present on this farmland would change if a fire burned down all thetrees 120 years after the land was abandoned.
Pathogens can be transmitted through contact with surfaces like doorknobs and countertops.a. True b. False
What is this I kinda need to know ASAP
All of the energy that drives Earth's rock cycle comes from
What is the difference between a carbon footprint and an ecological, or global, footprint?

How does a mutation affect a gene? A.
A mutation changes the sequence of RNA bases in a gene.


B.
A mutation creates the sequence of RNA bases in a gene.


C.
A mutation changes the sequence of DNA bases in a gene.


D.
A mutation creates the sequence of traits in a gene.

Answers

The correct answer is C cause mutations changes DNA

Why are polygenic diseases less suited to gene therapy?

Answers

Answer:

Polygenic therapies are more likely to show unintended effects in other regions of the genome likely resulting in harmful diseases.

Explanation:

Gene therapy involves biotechnological techniques that add or remove gene sequences in the genome. These are typically used in eliminating harmful genes that cause genetic diseases or disorders and are generally thought to improve an individual's quality of life.

Polygenic traits are controlled by several genes. Similarly, polygenic diseases may be caused by variations in several gene sequences. These include hypertension, heart disease, and diabetes. Polygenic therapies are more likely to show unintended effects in other regions of the genome, leading to other deleterious disease-causing effects.

If you flipped a penny 99 times and each time it came up heads, then the chance of the penny coming up heads again is ____ . 50% 1% 100% 25%

Answers

The chance of coming up heads 99 times in a row is abysmally small: 50%^99 = 1.57 * 10^-30.This however has already happened, it does not influence the next penny flip.A penny has two sides, so the chance of it landing on one side is 1/2 = 0.5 = 50%.So the result of the next flip has a chance of 50% of coming up heads.

What did Thomas Hunt Morgan discover?

Answers

Thomas Hunt Morgan hoped to discover large-scale mutations that would represent the emergence of new species.

1910

Thomas Hunt Morgan (1866-1945) establishes the chromosomal theory of heredity

Thomas Hunt Morgan, an embryologist who had turned to research in heredity, in 1907 began to extensively breed the common fruit fly, Drosophila melanogaster. He hoped to discover large-scale mutations that would represent the emergence of new species. As it turned out, Morgan confirmed Mendelian laws of inheritance and the hypothesis that genes are located on chromosomes. He thereby inaugurated classical experimental 

After breeding millions of Drosophila in his laboratory at Columbia University, in 1910 Morgan noticed one fruit fly with a distinctive characteristic: white eyes instead of red. He isolated this specimen and mated it to an ordinary red-eyed fly. Although the first generation of 1,237 offspring was all red-eyed but for three, white-eyed flies appeared in larger numbers in the second generation. Surprisingly, all white-eyed flies were male.

These results were suggestive for hypotheses of which Morgan himself was skeptical. He was at the time critical of the Mendelian theory of inheritance, mistrusted aspects of chromosomal theory, and did not believe that Darwin's concept of natural selection could account for the emergence of new species. But Morgan's discoveries with white- and red-eyed flies led him to reconsider each of these hypotheses.

In particular, Morgan began to entertain the possibility that association of eye color and sex in fruit flies had a physical and mechanistic basis in the chromosomes. The shape of one ofDrosophila's four chromosome pairs was thought to be distinctive for sex determination. Males invariably possess the XY chromosome pair (Morgan used a more cumbersome notation) while flies with the XX chromosome are female. If the factor for eye color was located exclusively on the X chromosome, Morgan realized, Mendelian rules for inheritance of dominant and recessive traits could apply.

In brief, Morgan had discovered that eye color in Drosophilaexpressed a sex-linked trait. All first-generation offspring of a mutant white-eyed male and a normal red-eyed female would have red eyes because every chromosome pair would contain at least one copy of the X chromosome with the dominant trait. But half the females from this union would now possess a copy of the white-eyed male's recessive X chromosome. This chromosome would be transmitted, on average, to one-half of second-generation offspring—one-half of which would be male. Thus, second-generation offspring would include one-quarter with white eyes—and all of these would be male.

Intensive work led Morgan to discover more mutant traits—some two dozen between 1911 and 1914. With evidence drawn from cytology he was able to refine Mendelian laws and combine them with the theory—first suggested by Theodor Boveri and Walter Sutton—that the chromosomes carry hereditary information. In 1915, Morgan and his colleagues published The Mechanism

• Discrete pairs of factors located on chromosomes like beads on a string bear hereditary information. These factors—Morgan would soon call them genes—segregate in germ cells and combine during reproduction, essentially as predicted by Mendelian laws. However:

• Certain characteristics are sex-linked—that is, occur together because they arise on the same chromosome that determines gender. More generally:

• Other characteristics are also sometimes associated because, as paired chromosomes separate during germ cell development, genes proximate to one another tend to remain together. But sometimes, as a mechanistic consequence of reproduction, this linkage between genes is broken, allowing for new combinations of traits.

Morgan's experimental and theoretical work inaugurated research in genetics and promoted a revolution in biology. Evidence he adduced from embryology and cell theory pointed the way toward a synthesis of genetics with evolutionary theory. Morgan himself explored aspects of these developments in later work, includingEvolution and Genetics published in 1925, and The Theory of the Gene in 1926. He received the Nobel Prize in Physiology or Medicine in 1933.

What is shown in the image? A cell with no nucleus is shown. prokaryote eukaryote chloroplast mitochondrion

Answers

Answer:

if the image has no nucleus shown then it's a prokaryotic cell.....

prokaryote mutation cellllll

Provide 3 points of interest about translation of the cell.

Answers

In Biology, the process of translation is where proteins are created from cellular ribosomes. The process of translation is composed of three phases: Initiation, Elongation, and Termination.

During the Initiation, ribosomes assemble around the target mRNA and tRNA is attached at the start codon. tRNA then transfers amino acid to the tRNA of the next codon during the Elongation. While the ribosome creates the amino acid chain while moving to the next mRNA codon. During the Termination, ribosome releases polypeptide in the stop codon.