1. What is the volume of 0.900 moles of an ideal gas at 25.0° C and a pressure of 950.0 mm Hg?1.50 liters
17.6 liters
18.0 liters
34.2 liters

2. What is the pressure, in mm Hg, of 2.50 moles of an ideal gas if it has a volume of 50.0 liters when the temperature is 27.0° C? 
 84.2 mm Hg 
 289 mm Hg 
 617 mm Hg 
 936 mm Hg

3. When 12.4 grams of KBr are dissolved in enough water to create a 170-gram solution, what is the solution's concentration, expressed as a percent by mass? 
 6.2% KBr 
 6.8% KBr 
 7.3% KBr 
 7.9% KBr

Answers

Answer 1
Answer: 1. Using the ideal gas law, which states that PV = nRT, and remembering that absolute temperature must be used:
(950.0 mmHg)(V) = (0.900 moles)(R)(25.0 + 273.15 K)
The most convenient value of R is 0.08206 L-atm/mol-K, so we convert the pressure of 950.0 mmHg to atm by dividing by 760: 1.25 atm
(1.25 atm)(V) = (0.9)(0.08206)(298.15)
V = 17.6 L

2. Again using the ideal gas law, and converting temperature to Kelvin: 27 + 273.15 = 300.15 K
PV = nRT
P(50.0 L) = (2.50 moles)(0.08206 L-atm/mol-K)(300.15 K)
P = 1.23 atm
Then we multiply by 760 mmHg / 1 atm = 936 mmHg. This is the fourth of the choices.

3. If the complete solution has a mass of 170 grams, and 12.4 grams of it is the dissolved KBr, we simply have to divide the mass of solute (KBr) by the total mass of the solution: This gives us 12.4 grams / 170 grams = 0.0729. Multiplying by 100% gives 7.29% or approximately 7.3% KBr, which is the third of the choices.

Answer 2
Answer:

1. The volume of the ideal gas is \boxed{{\text{17}}{\text{.6 L}}} .

2. The pressure of the ideal gas is \boxed{{\text{936 mm Hg}}} .

3. The concentration of the solution, expressed as mass percent is \boxed{{\text{7}}{\text{.3 \% }}} .

Further Explanation:

An ideal gas is a hypothetical gas that is composed of a large number of randomly moving particles that are supposed to have perfectly elastic collisions among themselves. It is just a theoretical concept and practically no such gas exists. But gases tend to behave almost ideally at a higher temperature and lower pressure.

Ideal gas law is the equation of state for any hypothetical gas. The expression for the ideal gas equation is as follows:

{\text{PV}} = {\text{nRT}}        .......(1)

Here,

P is the pressure of ideal gas.

V is the volume of ideal gas.

T is the absolute temperature of the ideal gas.

n is the number of moles of the ideal gas.

R is the universal gas constant.

1. Rearrange equation (1) to calculate the volume of the ideal gas.

{\text{V}}=\frac{{{\text{nRT}}}}{{\text{P}}}    ......(2)

The pressure of the ideal gas is 950 mm Hg.

The temperature of the ideal gas is {\text{25}}\;^\circ{\text{C}} .

The number of moles of the ideal gas is 0.9 mol.

The universal gas constant is 0.0821 L atm/K mol.

Substitute these values in equation (2).

\begin{aligned}{\text{V}}&=\frac{{\left( {{\text{0}}{\text{.9 mol}}} \right)\left( {0.0821{\text{ L atm/K mol}}} \right)\left( {25 + 27{\text{3}}{\text{.15}}}\right){\text{K}}}}{{\left( {950{\text{ mm Hg}}}\right)\left( {\frac{{{\text{1 atm}}}}{{760{\text{ mm Hg}}}}}\right)}}\n&= 17.624{\text{ L}}\n&\approx {\text{17}}{\text{.6 L}}\n\end{aligned}

Therefore the volume of the ideal gas is 17.6 L.

2. Rearrange equation (1) to calculate the pressure of ideal gas.

 {\text{P}} =\frac{{{\text{nRT}}}}{{\text{V}}}        ......(3)

The volume of the ideal gas is 50 L.

The temperature of the ideal gas is {\text{27}}\;^\circ {\text{C}} .

The number of moles of the ideal gas is 2.5 mol.

The universal gas constant is 0.0821 L atm/K mol

Substitute these values in equation (3).

\begin{aligned}{\text{P}}&= \frac{{\left( {{\text{2}}{\text{.5 mol}}} \right)\left( {0.0821{\text{ L atm/K mol}}} \right)\left( {27 + 27{\text{3}}{\text{.15}}} \right){\text{K}}}}{{{\text{50 L}}}}\n&= 1.2321{\text{ atm}}\n&\approx 1.232{\text{ atm}}\n\end{aligned}

The pressure is to be converted into mm Hg. The conversion factor for this is,

{\text{1 atm}} = {\text{760 mm Hg}}

So the pressure of ideal gas can be calculated as follows:  

\begin{aligned}{\text{P}} &= \left({{\text{1}}{\text{.232 atm}}}\right)\left( {\frac{{{\text{760 mm Hg}}}}{{{\text{1 atm}}}}}\right)\n&= 936.3{\text{2 mm Hg}} \n&\approx 93{\text{6 mm Hg}}\n\end{aligned}

Therefore the pressure of the ideal gas is 936 mm Hg.

3. The formula to calculate the mass percent of KBr is as follows:

{\text{Mass}}\;{\text{percent}}=\left( {\frac{{{\text{Mass of KBr}}}}{{{\text{Mass of solution}}}}}\right)\left( {100} \right)   ......(4)

The mass of KBr is 12.4 g.

The mass of the solution is 170 g.

Substitute these values in equation (4).

\begin{aligned}{\text{Mass}}\;{\text{percent}}&= \left( {\frac{{{\text{12}}{\text{.4 g}}}}{{{\text{170 g}}}}} \right)\left( {100} \right)\n&= 7.294\;\% \n&\approx 7.{\text{3 \% }}\n\end{aligned}

Therefore the concentration of the solution is 7.3 %.

Learn more:

1. Which statement is true for Boyle’s law: brainly.com/question/1158880

2. Calculation of volume of gas: brainly.com/question/3636135

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Mole Concept

Keywords: P, V, n, R, T, ideal gas, pressure, volume, 17.6 L, 936 mm Hg, 7.3 %, 0.9 mol, 950 mm Hg, 50 L, 2.5 mol, 12.4 g, 170 g, KBr


Related Questions

What stores groundwater and let's ground water flow through it??!
238,2U --> 234Th +90
Why is the structure of molecule important to its function?
Is Jacinth non silicate or silicate?
PLZZZ HELP The normal range of blood glucose is 70–120 mg/dL. A person has a blood glucose level of 170 mg/dL. Based on your knowledge of the endocrine system and hormones, explain the likely cause for the person's condition.

Evaporating water is an example of a physical change because

Answers

Answer:

Because it will go back to water when it rains

Explanation:

Movement of molecules from an area of lower concentration to one of higher concentration with carrier molecules, using energy, is called ______________. A.
osmosis

B.
mitosis

C.
diffusion

D.
active transport

Answers

D. Active Transport is the answer

How can we increase the rate of collisions between the reactants in this reaction?Mg + 2HCl → MgCl2 + H2

Answers

Answer:

According to the collision theory, we can increase the rate of a reaction by increasing the concentration of reactants. We can also increase the rate of a reaction by increasing temperature to safe levels.

In the reaction mentioned in the question, Mg + 2HCl → MgCl2 + H2, if we increase the amount of magnesium or HCl, the reaction will proceed faster. Similarly, if we increase the temperature, then also the reaction rate will increase.

What is the Bohr model for beryllium

Answers

I had the same project where i had to create an atomic model and it is 4neutrons and 4electrons and 5 protons

(Fill in the blank) A kilometer is __________ times bigger than a meter.

Answers

Answer:

1000

Explanation:

kilometer equals to 1000 meters

1 kilometer would be 1000 or 10^3 meters

Express the product of 3.2 and 5.00 using the correct number of significant digits.

Answers

Answer: 1.6* 10^1

Explanation:

Significant figures : The figures in a number which express the value -the magnitude of a quantity to a specific degree of accuracy is known as significant digits.

Rules for significant figures:

Digits from 1 to 9 are always significant and have infinite number of significant figures.

All non-zero numbers are always significant.

All zero’s between integers are always significant.

All zero’s preceding the first integers are never significant.

All zero’s after the decimal point are always significant.

The rule apply for the multiplication and division is :

The least number of significant figures in any number of the problem determines the number of significant figures in the answer.

Thus for product of 3.2* 5.00=16

In this problem, 3.2 has 2 significant figures and 5.00 has 3 significant digits thus product will have the least number of significant figures which is 2. So, the answer will be in 2 significant figures.

Therefore, the answer is 1.6* 10^1

So 3.2 × 5 = 16 hope this helps