As a science project, you drop a watermelon off the top of the Empire State Building. 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a constant speed of 30 m/s. A) How much time passes before the watermelon has the same velocity? B) How fast is the watermelon going when it passes Superman?C) How fast is the watermelon traveling when it hits the ground?

Answers

Answer 1
Answer:

Answer:

3.06 seconds time passes before the watermelon has the same velocity

watermelon going at speed 59.9 m/s

watermelon traveling when it hits the ground at speed is 79.19 m/s

Explanation:

given data

height = 320 m

speed = 30 m/s

to find out

How much time passes before the watermelon has the same velocity and How fast is the watermelon going and How fast is the watermelon traveling

solution

we will use here equation of motion that is

v = u + at    ....................1

here v is velocity 30 m/s and u is initial speed i.e zero and a is acceleration i.e 9.8 m/s²

put the value and find time t

30 = 0 + 9.8 (t)

t = 3.06 s

so 3.06 seconds time passes before the watermelon has the same velocity

and

we know superman cover distance is = velocity × time

so distance = 30 × t

and distance formula for watermelon is

distance = ut + 0.5×a×t²    .............2

here u is initial speed i.e 0 and a is acceleration i.e 9.8 m/s² and h is 30 × t

30 × t = 0 + 0.5×9.8×t²

t = 6.12 s

so  by equation 1

v = u + at

v = 0 + 9.8 ( 6.12)

v = 59.9 m/s

so watermelon going at speed 59.9 m/s

and

watermelon traveling speed formula is by equation of motion

v² - u² = 2as      ......................3

here v is speed and u is initial speed i.e 0 and a is acceleration i.e 9.8 m/s² and s is distance i.e 320 m

v² - 0 = 2(9.8) 320

v = 79.19 m/s

so watermelon traveling when it hits the ground at speed is 79.19 m/s


Related Questions

A force of 140 140 newtons is required to hold a spring that has been stretched from its natural length of 40 cm to a length of 60 cm. Find the work done in stretching the spring from 60 cm to 65 cm. First, setup an integral and find a a, b b, and f ( x ) f(x) which would compute the amount of work done.
A ball of mass 0.7 kg flies through the air at low speed, so that air resistance is negligible. (a) What is the net force acting on the ball while it is in motionWhich components of the ball's momentum will be changed by this force? What happens to the x component of the ball's momentum during its flight? What happens to the y component of the ball's momentum during its flight? It decreases. What happens to the z component of the ball's momentum during its flight?
A boat that travels 3.00 m/s relative to the water is crossing a river that is 1.00 km wide. The destination on the far side of the river is 0.500 km downstream from the starting point. (a) If the river current is 2.00 m/s, in what direction should the boat be pointed in order to reach the destination? (b) How much time will the trip take?
What best describes a societal law
Please use Gauss’s law to find the electric field strength E at a distance r from the center of a sphereof radius R with volume charge density ???? = cr 3 and total charge ????. Your answer should NOT contain c. Be sure to consider regions inside and outside the sphere.

Average wavelength of radio waves​

Answers

The average wavelength of radio waves ​ranges from roughly two millimeters to more than 150 kilometers. The wavelengths of radio waves are the longest in the electromagnetic spectrum

What is Wavelength?

It can be understood in terms of the distance between any two similar successive points across any wave for example wavelength can be calculated by measuring the distance between any two successive crests.

It is the total length of the wave for which it completes one cycle.

The wavelength is inversely proportional to the frequency of the wave as from the following relation.

C = νλ

They also have the lowest frequencies, ranging from around 4,000 cycles per second, or 3 kilohertz, to roughly 280 billion hertz, or 280 gigahertz.

The wavelengths of radio waves are the longest in the electromagnetic spectrum, ranging from roughly two millimeters to more than 150 kilometers.

To learn more about wavelength from here, refer to the link given below;

brainly.com/question/7143261

#SPJ6

Answer:

Radio waves have frequencies as high as 300 gigahertz(GHz)to as low as 30 hertz(Hz).At 300 GHz the corresponding wavelength is 1mm and at 30Hz is 10,000 km

A proton and an alpha particle (helium nucleus consisting of two protons and two neutrons) are accelerated from rest across the same potential difference. Assume the proton mass and the neutron mass are roughly the same and neglect any relativistic effect. Compared to the final speed of the proton, the final speed of the alpha particle is?1. less by a factor of 22. less by a factor of √ 23. less by a factor of 44. greater by a factor of 25. the same

Answers

Answer:

option B

Explanation:

we know,

change in energy is equal to

W = (1)/(2)m(v^2 - u^2)

W = (1)/(2)m(v^2 - 0^2)

W = (1)/(2)m v^2

q = (1)/(2)m v^2

proton mass and the neutron mass are roughly the same

so,

q \alpha m v^2

now,

(q_p)/(q_(\alpha)) = (m_p v_p^2)/(m_(\alpha)v_(\alpha)^2)

(q_p)/(q_(\alpha)) = (m_p v_p^2)/(2 m_pv_(\alpha)^2)

we know,

mass of alpha particle is four times mass of the mass of proton. 

mα = 4 m_p

(e)/(2e) = ( v_p^2)/(4 v_(\alpha)^2)

( v_p^2)/(v_(\alpha)^2) = 2

v_(\alpha)^2 =( v_p^2)/(2)

v_(\alpha)=( v_p)/(√(2))

less by a factor of √2

Hence, the correct answer is option B

What advantage is there in using a set of helmholtz coils over just a single small magnet?

Answers

Two parallel coils separated by a distance equal to the radius of the coils are known as Helmholtz coils. They are frequently used because they generate a magnetic field that is uniform over an appreciable region about its midpoint.

Consider a situation where a constant force of 25 N acts on an object having a mass of 2 kg for 3 seconds. What is the work done by the force

Answers

Answer:

Work done W =1406.25 J

Explanation:

Work done on a body can be calculated using newton's 2nd laws:

F=ma

\Rightarrow a=(F)/(m)

Hence acceleration of the block is given by:

\Rightarrow a=(25)/(2)=12.5m/s^2

Displacement of the object is given by:

\Rightarrow S=ut+(1)/(2)at^2

Substitute the values

\Rightarrow S=0*3+(1)/(2)(12.5)3^2

\Rightarrow S=56.25 m

Now work done is given by:

 W=F.S

W = 25×56.25

W =1406.25 J

A racing car is travelling at 70 m/s and accelerates at -14 m/s2. What would the car’s speed be after 3 s?

Answers

Question:

A racing car is travelling at 70 m/s and accelerates at -14 m/s^2. What would the car’s speed be after 3 s?

Statement:

A racing car is travelling at 70 m/s and accelerates at -14 m/s^2.

Solution:

  • Initial velocity (u) = 70 m/s
  • Acceleration (a) = -14 m/s^2
  • Time (t) = 3 s
  • Let the velocity of the car after 3 s be v m/s
  • By using the formula,

v = u + at, we have

v = 70 + ( - 14)(3) \n  =  > v = 70 - 42 \n  =  > v = 28

  • So, the velocity of the car after 3 s is 28 m/s.

Answer:

The car's speed after 3 s is 28 m/s.

Hope it helps

The radius of a typical human eardrum is about 4.15 mm. Calculate the energy per second received by an eardrum when it listens to sound that is at the threshold of hearing, assumed to be 1.20E-12 W/m2

Answers

The energy per second received by an eardrum is 6.4884 * 10^(-17) watt

Calculation of the energy per second;

The area should be

= \pi r^2\n\n= 3.14 * 0.00415m\n\n= 5.407 * 10^(-5)m^2

Now

The power should be

= 1.2 * 10^(-12) * 5.407 * 10^(-5)\n\n= 6.4884 * 10^(-17) watt

Learn more about the energy here: brainly.com/question/14338287

Answer:

Power energy per second will be equal to 6.4884* 10^(-17)watt

Explanation:

We have given radius of human eardrum r = 4.15 mm = 0.00415 m

Intensity at threshold of hearing I=1.2* 10^(-12)w/m^2

Area is given by A=\pi r^2=3.14* 0.00415^2=5.407* 10^(-5)m^2

We know that power is given by P=I* A=1.2* 10^(-12)* 5.407* 10^(-5)=6.4884* 10^(-17)watt

So power energy per second will be equal to 6.4884* 10^(-17)watt