What happens to the pressure in all parts of a confined fluid if the pressure in one part is increased? The pressure in the other parts remains the same.The pressure everywhere increases by different amounts depending on the area of each part.
The pressure everywhere increases by the same amount.
The pressure everywhere decreases to conserve total pressure.

Answers

Answer 1
Answer:

Answer:

option C

Explanation:

the correct answer is option C

When in a confined fluid the pressure is increased in one part than the pressure will equally distribute in the whole system.

According to Pascal's law when pressure is increased in the confined system then the pressure will equally transfer in the whole system.  

This law's application is used in machines like hydraulic jacks.


Related Questions

Crude oil is a mixture of many different components. The extraction of crude oil from the Earth is important, but its refinement into different substances is a key piece to obtaining as many uses as possible from the crude oil. Using the diagram, justify the source of data used to develop the technology for refining the crude oil.
A squirrel is running a race where she is on track for her average velocity to be 6.0 m/s. She is distracted by a dummy of an attractive male squirrel and pauses for 3.0 s. As a result her average velocity ends up being 5.0 m/s instead. What is the length of the race? [HINT: construct two equations with the same two unknowns in them and you can solve the system of equations]
By using a 2-meter stick (like the one in lab) marked in millimeters and a stopwatch that measures to 1/100h of a second, you decide to measure the speed of a motorized toy car that travels at a constant velocity. You measure out a 162.0cm interval with the 2-meter stick and time how long it takes the car to travel that distance using the stopwatch. Repeating the ex 2.95 s Calculate the average speed of the toy car What are the absolute and relative uncertainties of the distance and time measurements? Which measurement is more uncertain? Use the weakest link rule to determine the relative and absolute uncertainty in your speed estimation. Explain why it is necessary to calculate relative uncertainties. Why is absolute uncertainty not enougn ent 5 times you get the following time data: 3.11 s 3.15 s 2.84 s 2.97 s
Which of the following statements is true about the variation of pressure in function of the depth? O Pressure decreases exponentially with the depth O Pressure increases exponentially with the depth O Pressure decreases linearly with the depth o Pressure increases linearly with the depth O None of the above
Nina and Jon are practicing an ice skating routine. Nina is standing still. Jon, who is twice as heavy as Nina, skates toward her, pushing Nina away with force f. Assuming the system is closed, which statement is correct about this system? a. Nina experiences a force equal to f/2. b. Nina experiences a force equal to f^2. c. Nina experiences a force equal to 2f. d. Nina experiences a force equal to f.

How does the force of gravity change as the mass of one object doubles?

Answers

The force of gravity changes as the mass of one object doubles. As the mass of one object is doubled then the force between the objects also gets doubled.

What is Force?

Force is an influence which can change the motion of an object through the application of an external force. A force can cause an object with the mass to change its velocity, that is the object undergo acceleration.

Force is directly proportional to the mass of the object and the acceleration of the object. If we double the mass of one of the objects, then we double the strength of the force. If we double the masses of both the objects, then we quadruple the strength of force.

Learn more about Force here:

brainly.com/question/13191643

#SPJ2

If the mass of one of the objects is doubled, then the force of gravity between them is doubled. ... Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces.

A remote controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by v= [5.00 m/s – (0.0180 m/s3)t^2 ]i+[2.00 m/s + (0.550 m/s2)t ]j .a) What are ax(t) and ay(t), the x- and y- components of cars acceleration as a function of time?
b) What are the magnitude and direction of the velocity of the car at t= 8 sec?
c) What is the magnitude and direction of cars acceleration at t=8 sec

Answers

Maybe try A for your answer

The position of a particle as a function of time is given by x = (2.0 m/s)t + (-3.0 m/s2)t2. (a) plot x-versus-t for time from t = 0 to t = 1.0 s. (do this on paper. your instructor may ask you to turn in this plot.) this answer has not been graded yet. (b) find the average velocity of the particle from t = 0.45 s to t = 0.55 s. m/s (c) find the average velocity from t = 0.49 s to t = 0.51 s.

Answers

Part a)

Equation of position with time is given as

x = (2.0 m/s)t + (-3.0 m/s2)t^2

since this equation is a quadratic equation

so it will be a parabolic graph between t = 0 to t = 1

part b)

at t = 0.45 s

x = 2* 0.45 - 3 * 0.45^2

x_1 = 0.2925 m

at t = 0.55 s

x = 2* 0.55 - 3*0.55^2

x_2 = 0.1925

now the displacement is given as

d = x_2 - x_1

d = 0.1925 - 0.2925 = -0.1 m

so the average velocity is given by

v = (d)/(t)

v = \frac{-0.1}{0.1) = -1 m/s

part c)

at t = 0.49 s

x = 2* 0.49 - 3 * 0.49^2

x_1 = 0.2597 m

at t = 0.51 s

x = 2* 0.51 - 3*0.51^2

x_2 = 0.2397 m

now the displacement is given as

d = x_2 - x_1

d = 0.2397 - 0.2597 = -0.02 m

so the average velocity is given by

v = (d)/(t)

v = \frac{-0.02}{0.02) = -1 m/s

The pendulum consists of two slender rods AB and OC which have a mass of 3 kg/m. The thin plate has a mass of 12 kg/m2 . a) Determine the location ӯ of the center of mass G of the pendulum, then calculate the mass moment of inertia of the pendulum about z axis passing through G. b) Calculate the mass moment of inertia about z axis passing the rotation center O.

Answers

Answer:

The answer is below

Explanation:

a) The location ӯ of the center of mass G of the pendulum is given as:

y=(0+(\pi*(0.3\ m) ^2*12kg/m^2*1.8\ m-\pi*(0.1\ m) ^2*12kg/m^2*1.8\ m)+0.75\ m*1.5\ m *3\ kg/m)/((\pi*(0.3\ m) ^2*12kg/m^2-\pi*(0.1\ m) ^2*12kg/m^2)+3\ kg/m^2*0.8\ m+3\ kg/m^2*1.5\ m) \n\ny=0.88\ m

b)  the mass moment of inertia about z axis passing the rotation center O is:

I_G=(1)/(12)*3(0.8)(0.8)^2+ 3(0.8)(0.888)^2-(1)/(2)*(12)(\pi)(0.1)^2(0.1)^2 -(12)(\pi)(0.1)^2(1.8-\n0.888)^2+(1)/(2)*(12)(\pi)(0.3)^2(0.3)^2 +(12)(\pi)(0.3)^2(1.8-0.888)^2+(1)/(12)*3(1.5)(1.5)^2+\n3(1.5)(0.888-0.75)^2\n\nI_G=13.4\ kgm^2

c) The mass moment of inertia about z axis passing the rotation center O is:

I_o=(1)/(12)*3(0.8)(0.8)^2+ (1)/(3)* 3(1.5)(1.5)^2+(1)/(2)*(12)(\pi)(0.3)^2(0.3)^2 +(12)(\pi)(0.3)^2(1.8)^2-\n(1)/(2)*(12)(\pi)(0.1)^2(0.1)^2 -(12)(\pi)(0.1)^2(1.8)^2\n\nI_o=13.4\ kgm^2

Final answer:

To solve this problem, calculate the mass of each element of the pendulum, use that information to determine the center of mass, and then apply the parallel axis theorem to calculate the two moments of inertia.

Explanation:

To determine the center of mass and the mass moment of inertia of the pendulum, first we calculate the individual masses of the rods: AB and OC, and the plate. Each rod has a mass of 2 kg (given mass per unit length is 3kg/m and length of each rod is 1 m from the first reference paragraph).

The center of mass ӯ can be determined using the formula for center of mass, averaging distances to each mass element weighted by their individual masses. The mass moment of inertia, also known as the angular mass, for rotation about the z axis through G is determined using the parallel axis theorem, which states that the moment of inertia about an axis parallel to and a distance D away from an axis through the center of mass is the sum of the moment of inertia for rotation about the center of mass and the total mass of the body times D squared.

Finally, the moment of inertia about the z axis passing through the center of rotation O can be calculated again using the parallel axis theorem, with distance d being the distance between points G and O.

Learn more about Mass Moment of Inertia here:

brainly.com/question/33002666

#SPJ3

If i throw up an object up at 31 m/s, how long will it take to get to its highest point

Answers

Answer:

Explanation:

vf=vi+at

vf=31 m/s

vi=0 m/s

a=g=9.8 m/s2

t=?

vf-vi=at

vf-vi/a=t

t=vf-vi/a

t=31 m/s-0/9.8

t=3.16 s

A long wire carries a current density proportional to the distance from its center, J=(Jo/ro)•r, where Jo and ro are constants appropriate units. Determine the magnetic field vector inside this wire.

Answers

Answer:

B = \mu_0((1)/(3) (J_0)/(r_0) r^2)

Explanation:

As the current density is given as

J = (J_0)/(r_0)r

now we have current inside wire given as

i = \int J(2\pi r)dr

i = \int (J_0)/(r_0) r(2\pi r)dr

i = 2\pi (J_0)/(r_0) \int r^2 dr

i = (2)/(3) \pi (J_0)/(r_0) r^3

Now by Ampere's law we will have

\int B. dl = \mu_0 i

B. (2\pi r) = \mu_0((2)/(3) \pi (J_0)/(r_0) r^3)

B = \mu_0((1)/(3) (J_0)/(r_0) r^2)