What factors govern the position of an IR absorption peak? Select one or more correct answers.(A) strength of the bond
(B) effect of a magnetic field on nucleus spin
(C) masses of the atoms involved in the bond
(D) the type of vibration being observed

Answers

Answer 1
Answer:

Answer:

The factors that govern the position of an IR absorption peak are:

(A) strength of the bond

(C) masses of the atoms involved in the bond

(D) the type of vibration being observed

Explanation:

In infrared spectroscopy the molecules absorb the frequencies that are characteristic of their structure. These absorptions occur at resonance frequencies, that is, the frequency of the absorbed radiation coincides with the frequency of vibration. The energies are affected by the shape of molecular potential energy surfaces, the masses of atoms and the associated vibronic coupling. The resonance frequencies are also related to the strength of the bond and the mass of the atoms at each end of it. Therefore, the frequency of vibrations is associated with a particular normal movement mode and a particular type of link.


Related Questions

The solubility of glucose at 30°C is125 g/100 g water. Classify a solution made by adding 550 g of glucose to 400 mL of water at 30°C. Explain your classification, and describe how you could increase the amount of glucose in the solution without adding more glucose.
Fermentation is a complex chemical process of wine making in which glucose is converted into ethanol and carbon dioxide: C6H12O6 → 2C2H5OH + 2CO2 glucose ethanol Starting with 945.0 g of glucose, what is the maximum amount of ethanol in grams and in liters that can be obtained by this process (density of ethanol = 0.789 g/mL)?
A cool, yellow-orange flame is used to heat the crucible. Would this affect the mass of the crucible? If so, how?
What isotope has a mass number of 18 and an atomic number of 7​
Write the expression for the equilibrium constant Kp for the following reaction. Enclose pressures in parentheses and do NOT write the chemical formula as a subscript. For example, enter (PNH3 )2 as (P NH3)2. If either the numerator or denominator is 1, please enter 1 2 MoO3(s) ↔ 2 MoO2(s) + O2(g)

What reaction conditions most effectively conver a cabocxylic acid to a methly ester?

Answers

Answer:

Esterification reaction

Explanation:

When we have to go from an acid to an ester we can use the esterification reaction. On this reaction, an alcohol reacts with a carboxylic acid on acid medium to produce an ester and water. (See figure).  

In this case, we need the methyl ester, therefore we have to choose the appropriate alcohol, so we have to use the methanol as reactive if we have to produce the methyl ester.

Which enzymes show very broad substrate specificity and can therefore be used to produce several higher alcohols.Select one:

a. 2-keto acid decarboxylase AND alcohol dehydrogenase
b. alcohol dehydrogenase
c. transaminase
d. acetolactate synthasee. 2-ketoacid decarboxylase

Answers

Answer:

A. 2-keto acid decarboxylase and alcohol dehydrogenase

Explanation:

2-keto acid decarboxylase and alcohol dehydrogenase are used to produce many higher alcohols. These enzymes also display a high degree of specificity on their substrate

Ammonia, NH3, is used as a refrigerant. At its boiling point of –33 oC, the standard enthalpy of vaporization of ammonia is 23.3 kJ/mol. How much heat is released when 50.0 g of ammonia is condensed at –33 oC?–0.466 kJ–7.94 kJ–36.6 kJ–68.4 kJ–1.17 x 103 kJ

Answers

Answer:

-68.4 kJ

Explanation:

The standard enthalpy of vaporization = 23.3 kJ/mol

which means the energy required to vaporize 1 mole of ammonia at its boiling point (-33 °C).

To calculate heat released when 50.0 g of ammonia is condensed at -33 °C.

This is the opposite of enthalpy of vaporization which means that same magnitude of heat is released.

Thus,  Q = -23.3 kJ/mol

Where negative sign signifies release of heat

Given: mass of 50.0 g

Molar mass of ammonia = 17.034 g/mol

Moles of ammonia = 50.0 /17.034 moles = 2.9353 moles

Also,

1 mole of ammonia when condenses at -33 °C releases 23.3 kJ

2.9412 moles of ammonia when condenses at -33 °C releases 23.3×2.9353 kJ

Thus, amount of heat released when 50 g of ammonia condensed at -33 °C= -68.4 kJ, where negative sign signifies release of heat.

Final answer:

The heat released when 50.0 g of ammonia condenses at its boiling point is -68.4 kJ. This is calculated by multiplying the moles of ammonia by the enthalpy of vaporization and recognizing that heat is released in condensation.

Explanation:

To solve this problem, we need to understand the concept of enthalpy of vaporization, which is the heat needed to convert 1 mole of a substance from a liquid to a gas at constant pressure and temperature. For ammonia (NH3), which boils at -33 °C, the enthalpy of vaporization is 23.3 kJ/mol. However, we want the heat released when 50.0 g (around 2.94 moles) of ammonia condenses, which is the reverse process of vaporization. Thus, the energy would be released rather than absorbed.

Now, let's calculate this value. We multiply the number of moles of ammonia by the enthalpy of vaporization:

2.94 moles x 23.3 kJ/mol = 68.4 kJ

Since this is the reverse of the process of vaporization, heat is released, so the enthalpy change is negative (-68.4 kJ). Therefore, the correct answer is -68.4 kJ.

Learn more about Enthalpy of Vaporization here:

brainly.com/question/32361849

#SPJ11

An order is given to administer methylprednisolone, an anti-inflammatory drug, by IV at a rate of 36 mg every 30. min . The IV bag contains 125 mg of methylprednisolone in every 2.0 mL . What should the flow rate be in milliliters per minute (mL/min)?

Answers

Answer:

0.0192 mL per min.

Explanation:

IV rate = 36 mg per 30 min.

IV concentration = 125 mg per 2.0 mL

36 mg per 30 min. IV rate = 36/30 = 1.2 mg per min

If 125 mg methylprednisolone is present in 2.0 mL of the IV nag, how many mL would contain 1.2 mg?

      = 2x1.2/125

                        = 0.0192 mL

Therefore, the flow rate of the IV must be 0.0192 mL per min. in order to be able to deliver 36 mg per 30 min.    

What is the molarity if 24 moles of solute are dissolved into 6 L of solution?

Answers

Answer:

Molarity= 4M

Explanation:

n= CV

24= C×6,

C= 24/6 = 4M

Answer:4M

Explanation:

Number of moles=24

Volume=6L

Molarity=number of moles ➗ volume

Molarity=24 ➗ 6

Molarity=4M

This section of the periodic table is called a(n)

Answers

Answer:

Is it Group?

Explanation:

Group 2A (or IIA) of the periodic table are the alkaline earth metals: beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).