Four +2 µC point charges are at the corners of a square of side 2 m. Find the potential at the center of the square (relative to zero potential at infinity) for each of the following conditions.(a) All the charges are positive(b) Three of the charges are positive and one is negative(c) Two are positive and two are negative

Answers

Answer 1
Answer:

Answer:

(a) 51428.59 J/C

(b) 25714.29 J/C

(c) 0 J/C

Explanation:

Parameters given:

Q1 = 2 * 10^-6 C

Q2 = 2 * 10^-6 C

Q3 = 2 * 10^-6 C

Q4 = 2 * 10^-6 C

=> Q1 = Q2 = Q3 = Q4 = Q

Side of the square = 2m

The center of the square is the midpoint of the diagonals, i.e. Using Pythagoras theorem:

BD² = 2² + 2²

BD² = 8

BD = √(8) = 2.8m

OD = 1.4m

(The attached diagram explains better)

Hence, the distance between the center and each point charge, r, is 1.4m.

Electric Potential, V = kQ/r

k = Coulombs constant

(a) If all charges are positive:

V(Total) = V1 + V2 + V3 + V4

V1 = Potential due to Q1

V2 = Potential due to Q2

V3 = Potential due to Q3

V4 =Potential due to Q4

Since Q1 = Q2 = Q3 = Q4 = Q

=> V1 = V2 = V3 = V4

=> V(Total) = 4V1

V  = (4 * 9 * 10^9 * 2 * 10^-6)/1.4

V = 51428.59J/C

(b) If 3 charges are positive and 1 is negative:

Since Q1 = Q2 = Q3 = Q

and Q4 = -Q

The total potential becomes:

V(Total) = V1 + V2 + V3 - V4

Since V1, V2, V3 and V4 have the same value,

V(Total) = V1 + V2

V(Total) = 2V1

V(Total) = (2 * 9 * 10^9 * 2 * 10^-6)/1.4

V(Total) = 25174.29 J/C

(c) Two charges are positive and two are negative:

Since Q1 = Q2  = Q

and Q3 = Q4 = -Q

The total potential becomes:

V(Total) = V1 + V2 - V3 - V4

Since V1, V2, V3 and V4 have the same value,

V(Total)  = 0 J/C


Related Questions

A 2.0 cm thick brass plate (k_r = 105 W/K-m) is sealed to a glass sheet (kg = 0.80 W/K m), and both have the same area. The exposed face of the brass plate is at 80°C, while the exposed face of the glass is at 20 °C. How thick is the glass if the glass brass interface is at 65 C? Ans. 0.46 mm​
A twirlers baton is 0.76 m long and spins around its center. The end of the baton has a centripetal acceleration of 47.8 m/s2?A 0.31 sB 0.56 sC 4.3sD 70s
To estimate the width of a valley, a climber starts a stopwatch as he shouts. He hears an echo from the opposite side of the valley after 1.0s. The sound travels at 340m/ s. What is the width of the valley?
Express the following speeds as a function of the speed of light, c: (a) an automobile speed (93 km/h) (b) the speed of sound (329 m/s) (c) the escape velocity of a rocket from the Earth's surface (12.1 km/s) (d) the orbital speed of the Earth about the Sun (Sun-Earth distance 1.5×108 km).
When it is at rotating at full speed, a disk drive in a certain old computer game system revolves once every 0.050 seconds. Starting from rest, it takes two revolutions for the disk to reach full speed. Assuming that the angular acceleration of the disk is constant, what is its angular acceleration while it is speeding up

Light from a sodium vapor lamp (λ-589 nm) forms an interference pattern on a screen 0.91 m from a pair of slits in a double-slit experiment. The bright fringes near the center of the pattern are 0.19 cm apart. Determine the separation between the slits. Assume the small-angle approximation is valid here.

Answers

Answer:

separation between the slits is 0.28 mm

Explanation:

given data

wave length λ = 589 nm = 589 × 10^(-9) m

distance between slits and the screen D = 0.91 m

fringes weight y = 0.19 cm = 0.19 × 10^(-2) m

solution

we find here the spacing between the two slits i.e d

so use here formula that is

y = λD ÷ d       .........................1

put here value we get

0.19 × 10^(-2) = (589*10^(-9)*0.91)/(d)

solve we get

d = 0.28 mm

If a material has an index of refraction of 1.61, Determine the speed of light through this medium

Answers

Answer:

1.86 x 10^8 m/s

Explanation:

n = 1.61

The formula for the refractive index is given by

n = speed of light in vacuum / speed of light in material

n = c / v

v = c / n

v = (3 x 10^8) / 1.61

v = 1.86 x 10^8 m/s

Final answer:

The speed of light in a material with an index of refraction of 1.61 is calculated as approximately 1.86 * 10^8 m/s, using the equation v = c/n where c is the speed of light in vacuum and n is the index of refraction.

Explanation:

The speed of light in a given material can be calculated using the index of refraction of the material, as defined by the equation n = c/v, where n is the index of refraction, c is the speed of light in a vacuum, and v is the speed of light in the material.

Given that the index of refraction for the material in question is 1.61, and the speed of light in vacuum, c = 3.00 * 10^8 m/s, the speed of light v in this medium would therefore be calculated by rearranging the equation to v = c/n.

 

By substituting the given values into the equation, v = 3.00 * 10^8 m/s / 1.61, we find that the speed of light in the material is approximately 1.86 * 10^8 m/s.

Learn more about Speed of Light here:

brainly.com/question/28224010

#SPJ3

In order to work well, a square antenna must intercept a flux of at least 0.040 N⋅m2/C when it is perpendicular to a uniform electric field of magnitude 5.0 N/C.

Answers

Answer:

L > 0.08944 m or L > 8.9 cm

Explanation:

Given:

- Flux intercepted by antenna Ф = 0.04 N.m^2 / C

- The uniform electric field E = 5.0 N/C

Find:

- What is the minimum side length of the antenna L ?

Solution:

- We can apply Gauss Law on the antenna surface as follows:

                             Ф = \int\limits^S {E} \, dA

- Since electric field is constant we can pull it out of integral. The surface at hand is a square. Hence,

                             Ф = E.(L)^2

                             L = sqrt (Ф / E)

                             L > sqrt (0.04 / 5.0)

                             L > 0.08944 m

Final answer:

The area of a square antenna needed to intercept a flux of 0.040 N⋅m2/C in a uniform electric field of magnitude 5.0 N/C is 0.008 m². Consequently, each side of the antenna must be about 0.089 meters (or 8.9 cm) long.

Explanation:

The question pertains to the relationship between electric field and flux. The electric flux through an area is defined as the electric field multiplied by the area through which it passes, oriented perpendicularly to the field.

We are given that the electric field (E) is 5.0 N/C and the flux Φ must be 0.040 N⋅m2/C.

Hence, to intercept this amount of flux, the antenna must have an area (A) such that A = Φ / E.

That is, A = 0.040 N⋅m2/C / 5.0 N/C = 0.008 m².

Since the antenna is square, each side will have a length of √(0.008) ≈ 0.089 meters (or 8.9 cm).

Learn more about Electric Flux here:

brainly.com/question/32826728

#SPJ3

Ezra (m = 20.0 kg) has a tire swing and wants to swing as high as possible. He thinks that his best option is to run as fast as he can and jump onto the tire at full speed. The tire has a mass of 10.0 kg and hangs 3.50 m straight down from a tree branch. Ezra stands back 10.0 m and accelerates to a speed of 3.62 m/s before jumping onto the tire swing. (a) How fast are Ezra and the tire moving immediately after he jumps onto the swing? m/s (b) How high does the tire travel above its initial height?

Answers

Answer:

a) v=5.6725\,m.s^(-1)

b) h= 1.6420\,m

Explanation:

Given:

  • mass of the body, M=20\,kg
  • mass of the tyre,m=10\,kg
  • length of hanging of tyre, l=3.5m
  • distance run by the body, d=10m
  • acceleration of the body, a=3.62m.s^(-2)

(a)

Using the equation of motion :

v^2=u^2+2a.d..............................(1)

where:

v=final velocity of the body

u=initial velocity of the body

here, since the body starts from rest state:

u=0m.s^(-1)

putting the values in eq. (1)

v^2=0^2+2* 3.62 * 10

v=8.5088\,m.s^(-1)

Now, the momentum of the body just before the jump onto the tyre will be:

p=M.v

p=20* 8.5088

p=170.1764\,kg.m.s^(-1)

Now using the conservation on momentum, the momentum just before climbing on the tyre will be equal to the momentum just after climbing on it.

(M+m)* v'=p

(20+10)* v'=170.1764

v'=5.6725\,m.s^(-1)

(b)

Now, from the case of a swinging pendulum we know that the kinetic energy which is maximum at the vertical position of the pendulum gets completely converted into the potential energy at the maximum height.

So,

(1)/(2) (M+m).v'^2=(M+m).g.h

(1)/(2) (20+10)* 5.6725^2=(20+10)* 9.8* h

h\approx 1.6420\,m

above the normal hanging position.

What does a planet need in order to retain an atmosphere? How does an atmosphere affect the surface of a planet and the ability of life to exist?

Answers

Answer:

Explained

Explanation:

In order to retain atmosphere a planet needs to have gravity. A gravity sufficient enough to create a dense atmosphere around it, so that it can retain heat coming from sun. Mars has shallow atmosphere as its gravity is only 40% of the Earth's gravity. Venus is somewhat similar to Earth but due to green house effect its temperature is very high. Atmosphere has a huge impact on the planets ability to sustain life. Presence of certain kind gases make the atmosphere poisnous for life. The atmosphere should be such that it allows water to remain in liquid form and maintain an optimum temperature suitable for life.

You have built a device that measures the temperature outside and displays it on a dial as a measure of how far away from room temperature outside is. The way the dial works is that a needle with a charged ball on the end is placed between two charged parallel plates. The strength of the uniform electric field between the plates is proportional to the outside temperature. Given that the charged ball on the needle has a charge of?

Answers

Answer:

m=33.734 grams

E=41435.95 N/C

Explanation:

The detailed explanation of Answer is given in the attached file.