The boom is supported by the winch cable that has a diameter of 0.5 in. and allowable normal stress of σallow=21 ksi. A boom rises from pin A to B, at angle phi from horizontal. A cable goes up from the load to B and then left to a pulley. Determine the greatest weight of the crate that can be supported without causing the cable to fail if ϕ=30∘. Neglect the size of the winch.

Answers

Answer 1
Answer:

Explanation:

Let us assume that forces acting at point B are as follows.

        \sum F_(x) = 0

        T + F_(AB) Sin 60 = 0 ...... (1)

       \sum F_(y) = 0

       F_(AB) Cos 60 + W = 0 .......... (2)

Hence, formula for allowable normal stress of cable is as follows.

               \sigma_(allow) = (T)/(A)

       T = (20 * 1000) (\pi)/(4) * (0.5)^(2)

          = 3925 kip

From equation (1),   F_(AB)Sin (60^(o))  = -3925

               F_(AB) * -0.304 8 = -3925

             F_(AB) = 12877.29 kip

From equation (2),    -12877.29 (Cos 60) + W = 0

         -12877.29 kip * (1)/(2) + W = 0

                           W = 6438.64 kip

Thus, we can conclude that greatest weight of the crate is 6438.64 kip.

Answer 2
Answer:

To determine the greatest weight of the crate that can be supported without causing the cable to fail, calculate the normal stress on the cable using σ = F/A, where σ is the normal stress, F is the force on the cable, and A is the cross-sectional area of the cable. Then, compare the calculated normal stress to the allowable normal stress. Consider the angle phi in this calculation by using the equation F = W / sin(ϕ), where F is the force on the cable, W is the weight of the crate, and ϕ is the angle with respect to the horizontal.

To determine the greatest weight of the crate that can be supported without causing the cable to fail, we need to calculate the normal stress on the cable and compare it to the allowable normal stress. The normal stress can be calculated using the formula σ = F/A, where σ is the normal stress, F is the force on the cable, and A is the cross-sectional area of the cable. In this case, the force on the cable is equal to the weight of the crate, and the cross-sectional area of the cable can be calculated using the formula A = π*(d/2)^2, where d is the diameter of the cable.

Given that the diameter of the cable is 0.5 in and the allowable normal stress is 21 ksi, we can substitute these values into the equations and solve for the force on the cable:

Calculate the cross-sectional area of the cable: A = π*(0.5/2)^2 = π*(0.25)^2 = 0.1963 in^2

Plug the cross-sectional area and the allowable normal stress into the formula for normal stress: σallow = F/A → 21 ksi = F/0.1963 in^2

Solve for the force on the cable: F = 21 ksi * 0.1963 in^2 = 4.1183 ksi*in^2

Therefore, the greatest weight of the crate that can be supported without causing the cable to fail is equal to the force on the cable, which is 4.1183 ksi*in^2. However, it's important to note that we also need to consider the angle phi (ϕ) in this calculation. Since the cable goes up from the load to point B and then left to a pulley, the weight of the crate will create a vertical component and a horizontal component. To determine the weight of the crate that corresponds to the calculated force on the cable, we need to consider the trigonometric relationship between the force and the weight at an angle. In this case, the angle is 30 degrees, so we can use the equation F = W / sin(ϕ), where F is the force on the cable, W is the weight of the crate, and ϕ is the angle with respect to the horizontal.

Given that ϕ = 30 degrees and F = 4.1183 ksi*in^2, we can substitute these values into the equation and solve for the weight of the crate:

Plug the values into the equation: 4.1183 ksi*in^2 = W / sin(30)

Solve for the weight of the crate: W = 4.1183 ksi*in^2 * sin(30)

Therefore, the greatest weight of the crate that can be supported without causing the cable to fail and at an angle of 30 degrees is equal to the force on the cable, which is 4.1183 ksi*in^2, multiplied by the sine of 30 degrees.

For more such questions on force on the cable, click on:

brainly.com/question/34685180

#SPJ3


Related Questions

A single-turn circular loop of wire of radius 5.0 cm lies in a plane perpendicular to a spatially uniform magnetic field. During a 0.02500.0250-\text{s}s time interval, the magnitude of the field increases uniformly from 200 to 300 mT. Determine the magnitude of the emf induced in the loop
The aorta pumps blood away from the heart at about 40 cm/s and has a radius of about 1.0 cm. It then branches into many capillaries, each with a radius of about 5 x 10−4 cm carrying blood at a speed of 0.10 cm/s.How many capillaries are there?
A flat circular coil having a diameter of 25 cm is to produce a magnetic field at its center of magnitude, 1.0 mT. If the coil has 100 turns how much current must pass through the coil?
A cord is used to vertically lower an initially stationary block of mass M = 3.6 kg at a constant downward acceleration of g/7. When the block has fallen a distance d = 4.2 m, find (a) the work done by the cord's force on the block, (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block. (Note : Take the downward direction positive)
A battery with an emf of 12.0 V shows a terminal voltage of 11.7 V when operating in a circuit with two lightbulbs, each rated at 4.0 W (at 12.0 V), which are connected in parallel.What is the battery's internal resistance?

A certain x-ray tube requires a current of 7 mA at a voltage of 80 kV. The rate of energy dissipation is:

Answers

Answer:

560 watts

The rate of energy dissipation is 560 W

Explanation:

Rate of energy dissipation is the rate of energy consumption in the x-ray tube.

P = VI

Given;

Voltage V = 80 kV = 80,000

Current I = 7mA = 0.007 A

Substituting the given values;

P = 80,000 V × 0.007A

P = 560 Joules per second

P = 560 watts

The rate of energy dissipation is 560 W

One of two nonconducting spherical shells of radius a carries a charge Q uniformly distributed over its surface, the other carries a charge -Q, also uniformly distributed. The spheres are brought together until they touch.A.) What does the electric field look like, both outside and inside the shells?

B.) How much work is needed to move them far apart?

Answers

Answer:

Explanation:

A ) The spheres are non conducting , charge will not move on the surface so neutralization of charge by + ve and - ve charge is not possible. Charges will remain intact on them . The electric field inside them will be zero . Electric field outside shell  will not be spherically symmetrical . Lines of force will emanate from the surface of positively charged shell  outwardly oriented  and end at negatively charged shell .

B )

distance between the centres of spherical shell

= 2 a

potential energy of charges

= k q₁ x q₂ / R

= k x - Q x Q / ( 2a )

= - k Q²/ 2a

So work needed to separate them to infinity will be equal to

= k Q²/ 2a

A concave mirror is to form an image of the filament of a headlight lamp on a screen 8.50 m from the mirror. The filament is 6.00 mm tall, and the image is to be 37.5 cm tall. Part A: How far in front of the vertex of the mirror should the filament be placed?Part B: to what radius of curvature should you grind the mirror?

Answers

Answer:13.6 cm

Explanation:

Given

v(image distance)=-8.5 m

height of object(h_1)=6 mm

height of image (h_2)=37.5 cm

and magnification of concave mirror is given by m=(-v)/(u)=(-h_2)/(h_1)

m=(-37.5* 10)/(6)=-62.5

-62.5=(8.5* 100)/(u)

u=13.6 cm

so object is at a distance of 13.6 cm from mirror.

for focal length

(1)/(f)=(1)/(v)+(1)/(u)

(1)/(f)=(-1)/(850)+(-1)/(13.6)

(1)/(f)=-0.00117-0.0735

f=-13.4 cm

thus radius of curvature of mirror is R=2f=26.8 cm

Final answer:

The filament of the headlight lamp should be placed about 0.85 m in front of the vertex of the mirror. The radius of curvature for the concave mirror should be approximately 0.85 m.

Explanation:

To determine how far in front of the vertex of the mirror the filament should be placed, we can use the mirror equation:

1/f = 1/do + 1/di

Where f is the focal length of the concave mirror, do is the object distance, and di is the image distance.

With the given information, we have:

do = ?

di = 8.50 m

Using the magnification formula:

magnification = -di/do

By substituting the values we know, we can solve for do:

37.5 cm / 6.00 mm = -8.50 m / do

Solving for do, we find that do ≈ - 0.85 m.

Since the object distance cannot be negative, we conclude that the filament of the headlight lamp should be placed about 0.85 m in front of the vertex of the mirror.

To find the radius of curvature for the concave mirror, we use the mirror formula:

1/f = 1/do + 1/di

With do = -0.85 m and di = 8.50 m, we can rearrange the formula to solve for f:

1/f = 1/-0.85 + 1/8.50

1/f ≈ -1.1765

Solving for f, we find that the focal length is approximately 0.85 m.

Learn more about Concave mirror here:

brainly.com/question/3555871

#SPJ3

While leaning out a window that is 6.0 m above the ground, you drop a 0.60-kg basketball to a friend at ground level. Your friend catches the ball at a height of 1.6 m above the ground. Determine the following.(a) the amount of work done by the force of gravity on the ball.(b) the gravitational potential energy of the ball-earth system, relative to the ground when it is released.(c) the gravitational potential energy of the ball-earth system, relative to the ground when it is caught.

Answers

Answer:

a) W = 25.872 J

b) - 35.28 J

c) - 9.408

Explanation:

a) The amount of work done by the force of gravity on the ball = Change in potential energy between the two vertical points = - mg (H₂ - H₁)

F = - mg (gravity is acting downwards)

F = - 0.6 × 9.8 = - 5.88 N

(H₂ - H₁) = (1.6 - 6) = - 4.4 m

W = (-5.88)(-4.4) = 25.872 J

b) Gravitational-potential energy of the ball when it was released relative to the ground = (- mg) H₁ = (- 0.6 × 9.8) × 6 = - 35.28 J

c) Gravitational-potential energy of the ball when it is caught relative to the ground = (-mg)(H₂) = -0.6 × 9.8 × 1.6 = - 9.408 J

A syringe containing 12.0 mL of dry air at 25 C is placed in a sterilizer and heated to 100.0 C. The syringe is sealed, but the plunger can move and the volume can change. What is the volume of the air in the syringe at 100.0 C, assuming no change in pressure?

Answers

Answer:

15.01 Liters

Explanation:

T₁ = Initial temperature = 25°C = 298.15 K

T₂ = Final temperature = 100°C = 373.15 K

V₁ = Initial volume = 12 mL

Here, pressure is constant so we apply Charles Law

(V_1)/(T_1)=(V_2)/(T_2)\n\Rightarrow {V_2}=(V_1)/(T_1)* T_2\n\Rightarrow {V_2}=(12)/(298.15)* 373.15\n\Rightarrow {V_2}=15.01 L

∴ Final volume at 100°C is 15.01 Liters.

How many meters will a car travel if its speed is 45 m/s in an interval of 11 seconds?Question 2 options:

A) 450 meters


B) 495 meters


C) 4.09 meters


D) 498 meters

Answers

Data given:

V=45m/s

t=11s

Δx=?

Formula needed:

V=Δx/t

Solution:

Δx=v×t

Δx=45m/s×11s

Δx=495m

According to my solution B) is the most accurate

495 is the answer !!