Only one of three balls A, B, and C carries a net charge q. The balls are made from conducting material and are identical. One of the uncharged balls can become charged by touching it to the charged ball and then separating the two. This process of touching one ball to another and then separating the two balls can be repeated over and over again, with the result that the three balls can take on a variety of charges. Which one of the following distribution of charges could not possibly be achieved in this fashion, even if the process were repeated an infinite number of times?Why the answer is qA = 1/2q, qB=3/8q, qC=1/4q. Explain please.

Answers

Answer 1
Answer:

Answer:

This is greater than the initial charge, which violates the principle that the charge cannot be created or destroyed, consequently this distribution is impossible to achieve

Explanation:

The metals distribute the charge on all surface when they touch the surface increases so that charge density decreases and when the charge is separated into smaller in each metal.

Let's apply this principle to our case.

One of the spheres is loaded with a charge q, when touching a ball its charge is reduced to 1 / 2q for each ball.

         qA = ½ q

         qB = ½ q

         qC = 0

The total charge is q

we make a second contact

If we touch the ball A again with the other sphere not charged C, the chare is distributed and when separated it is reduced by half

         qA = 1/2 (q / 2) = ¼ q

         qC = ¼ q

         qB = ½ q

At this point all spheres have a charge,

      qA = ¼ q

      qb = ½ q

      qC = ¼ q

The total charge is q

Now let's contact spheres B and one of the other two

       Q = ½ q + ¼ q = ¾ q

When splitting the charge

        qB = ½ ¾ q = 3/8 q

        qC = ½ ¾ q = 3/8 q

        qA = ¼ q

The total charge is q

Note that the total load is always equal to q

Now let's analyze the given configuration

Let's look for the total load

       Q = qA + QB + QC

       Q = ½ q + 3/8 q + ¼ q

        Q = 9/8 q

This is greater than the initial charge, which violates the principle that the charge cannot be created or destroyed, consequently this distribution is impossible to achieve

Answer 2
Answer:

Final answer:

The principle of charge distribution among conductive materials is violated in qA = 1/2q, qB=3/8q, qC=1/4q, as the sum of charges on B and C doesn't equate to the charge on A and 3/8q isn’t a multiple of halving the original charge.

Explanation:

The answer lies in the fact that balls made of conducting materials when in contact, distribute charges evenly among them. This is due to the free movement of electrons within the conductive material that seeks to equalize potential difference, a property exploited in charge distribution problems of this sort.

Given the scenario, every time a charged ball, A, touches an uncharged ball (B or C) the net charge is evenly split between them. Hence, each subsequent distribution halves the charge of the originating ball (A) and gives the complementary half to the ball it's being touched to (B or C).

In the distribution, qA = 1/2q, qB=3/8q, qC=1/4q, the sum of charges on B and C does not equate to A, which is a violation of the charge conservation principle. Moreover, 3/8q isn’t a multiple of halving the original charge q, which negates the manner in which the charge is distributed (i.e., by halving).

Learn more about Charge Distribution here:

brainly.com/question/35166930

#SPJ3


Related Questions

The asteroid 234 Ida has a mass of about 4 × 1016 kg and an average radius of about 16 km. What is the acceleration due to gravity on 234 Ida? Assume that the asteroid is spherical; use G = 6.67 × 10–11 Nm2/kg2.A. 1 cm/s2B. 2 cm/s2C. 5 cm/s2D. 6 cm/s2
A piccolo and a flute can be approximated as cylindrical tubes with both ends open. The lowest fundamental frequency produced by one kind of piccolo is 522.5 Hz, and that produced by one kind of flute is 256.9 Hz. What is the ratio of the piccolo's length to the flute's length?
At takeoff, a commercial jet has a speed of 72 m/s. Its tires have a diameter of 0.89 m. Part (a) At how many rev/min are the tires rotating? Part (b) What is the centripetal acceleration at the edge of the tire in m/s^2?
A train travels due south at 20 m/s. It reverses its direction and travels due north at 20 m/s. What is the change in velocity of the train? 50 m/s, due south e50 m/s, due north 120 m/s, due south zero ms 40 m/s, due north
Consider different points along one spoke of a wheel rotating with constant angular velocity. Which of the following is true regarding the centripetal acceleration at a particular instant of time?a. The magnitude of the centripetal acceleration is greater for points on the spoke closer to the hub than for points closer to the rimb. both the magnitude and the direction of the centripetal acceleration depend on the location of the point on the spoke.c. The magnitude of the centripetal acceleration is smaller for points on the spoke closer to the hub than for points closer to the rim but the direction of the acceleration is the same at all points on this spoke.d. The magnitude and direction of the centripetal acceleration is the same at all points on this spoke.

How do you perceive the importance of online safety security ethics and etiquette​

Answers

Answer:

is called online etiquette, or netiquette for short.

...

Here are some tips to help you get started:

Create Complex Passwords.

Boost Your Network Security.

Use a Firewall.

Click Smart.

Be a Selective Sharer.

Protect Your Mobile Life.

Practice Safe Surfing & Shopping.

Keep up to date.

A river 500 ft wide flows with a speed of 8 ft/s with respect to the earth. A woman swims with a speed of 4 ft/s with respect to the water.1) If the woman heads directly across the river, how far downstream is she swept when she reaches the opposite bank?
2) If she wants to be swept a smaller distance downstream, she heads a bit upstream. Suppose she orients her body in the water at an angle of 37° upstream (where 0° means heading straight accross, how far downstream is she swept before reaching the opposite bank?
3) For the conditions, how long does it take for her to reach the opposite bank?

Answers

Answer:

1) \Delta s=1000\ ft

2)  \Delta s'=998.11\ ft.s^(-1)

3) t\approx125\ s

t'\approx463.733\ s

Explanation:

Given:

width of river, w=500\ ft

speed of stream with respect to the ground, v_s=8\ ft.s^(-1)

speed of the swimmer with respect to water, v=4\ ft.s^(-1)

Now the resultant of the two velocities perpendicular to each other:

v_r=√(v^2+v_s^2)

v_r=√(4^2+8^2)

v_r=8.9442\ ft.s^(-1)

Now the angle of the resultant velocity form the vertical:

\tan\beta=(v_s)/(v)

\tan\beta=(8)/(4)

\beta=63.43^(\circ)

  • Now the distance swam by the swimmer in this direction be d.

so,

d.\cos\beta=w

d* \cos\ 63.43=500

d=1118.034\ ft

Now the distance swept downward:

\Delta s=√(d^2-w^2)

\Delta s=√(1118.034^2-500^2)

\Delta s=1000\ ft

2)

On swimming 37° upstream:

The velocity component of stream cancelled by the swimmer:

v'=v.\cos37

v'=4* \cos37

v'=3.1945\ ft.s^(-1)

Now the net effective speed of stream sweeping the swimmer:

v_n=v_s-v'

v_n=8-3.1945

v_n=4.8055\ ft.s^(-1)

The  component of swimmer's velocity heading directly towards the opposite bank:

v'_r=v.\sin37

v'_r=4\sin37

v'_r=2.4073\ ft.s^(-1)

Now the angle of the resultant velocity of the swimmer from the normal to the stream:

\tan\phi=(v_n)/(v'_r)

\tan\phi=(4.8055)/(2.4073)

\phi=63.39^(\circ)

  • Now let the distance swam in this direction be d'.

d'* \cos\phi=w

d'=(500)/(\cos63.39)

d'=1116.344\ ft

Now the distance swept downstream:

\Delta s'=√(d'^2-w^2)

\Delta s'=√(1116.344^2-500^2)

\Delta s'=998.11\ ft.s^(-1)

3)

Time taken in crossing the rive in case 1:

t=(d)/(v_r)

t=(1118.034)/(8.9442)

t\approx125\ s

Time taken in crossing the rive in case 2:

t'=(d')/(v'_r)

t'=(1116.344)/(2.4073)

t'\approx463.733\ s

A small grinding wheel is attached to the shaft of an electric motor which has a rated speed of 3600 rpm. When the power is turned on, the unit reaches its rated speed in 5 s, and when the power is turned off, the unit coasts to rest in 70 s. Assuming uniformly accelerated motion, determine the number of revolutions that the motor executes (a) in reaching its rated speed, (b) in coasting to rest.

Answers

Answer:

(a) θ1 = 942.5rad, (b) θ2 = 13195 rad

Explanation:

(a) Given

ωo = 0 rad/s

ω = 3600rev/min = 3600×2(pi)/60 rad/s

ω = 377rad/s

t1 = 5s

θ1 = (ω + ωo)t/2

θ1 = (377 +0)×5/2

θ1 = 942.5 rads

(b) ωo = 377rad/s

ω = 0 rad/s

t2 = 70s

θ2 = (ω + ωo)t/2

θ2 = (377 +0)×70/2

θ2 = 13195 rad

Twopucksofequalmasscollideonafrictionlesssurface,asillustratedinthefigure.Immediatelyafterthe collision, the speed of the black puck is 1.5 m/s. What is the speed of the white puck immediately after the collision?

Answers

Answer:

The speed of the white puck immediately after the collision is 2.6 m/s.

Explanation:

Given that,

Two pucks are equal masses.

Speed of black puck = 1.5 m/s

According to given figure,

We need to calculate the speed of the white puck immediately after the collision

Using law of conservation of momentum

mv=m_(1)v_(1)\cos\theta+m_(2)v_(2)\cos\theta

Put the value into the formula according to figure

m*3=m* v_(1)*\cos30+m*1.5*\cos60

3m=0.866m v_(1)+0.75m

v_(1)=(3-0.75)/(0.866)

v_(1)=2.6\ m/s

Hence, The speed of the white puck immediately after the collision is 2.6 m/s.

You're carrying a 3.6-m-long, 21 kg pole to a construction site when you decide to stop for a rest. You place one end of the pole on a fence post and hold the other end of the pole 35 cm from its tip. For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution. Part A Part complete How much force must you exert to keep the pole motionless in a horizontal position? Express your answer in newtons. F = 114 N Previous Answers

Answers

Final answer:

This Physics problem involves balancing the forces and torques acting on a 3.6-m-long pole. By applying the principles of equilibrium and calculations of torque, we find that 114 N of force is needed to keep the pole in a horizontal position.

Explanation:

This is a physics problem related to the concepts of equilibrium and torque. From the details provided, we know that the pole has a mass of 21 kg and it's 3.6 meters long. The center of gravity (cg) of the pole, since it's uniform, is at the middle, which is at 1.8 m from either end of the pole. We are then told that you are holding the pole 35 centimeters (or 0.35 meters) from its tip.

To keep the pole horizontal in equilibrium, the downward force due to the weight of the pole at its center of mass (which is equal to the mass of the pole times gravity, or 21*9.8 = 205.8 N) needs to be balanced by the sum of the torques produced by the forces you are applying at the end you are holding and the force exerted by the fence post at the other end.

Let the force you apply be F1 and the force the fence post exerts be F2. We have F2 at 0.35 m from one end (the pivot point), and F1 at 3.6 - 0.35 = 3.25 m from the pivot. Given that the torque (t) equals to Force (F) times the distance from the pivot (d), and that the net torque should equal zero in equilibrium, we have:

0.35*F2 = 3.25*F1   (1)

Because the net force should also be zero in equilibrium, we have:

F1 + F2 = 205.8    (2)

Solving these two equations, we'll be able to calculate that the force you must exert to keep the pole motionless in a horizontal position, F1, is approximately 114 N.

Learn more about Physics - Torques and Equilibrium here:

brainly.com/question/31673675

#SPJ12

Final answer:

To balance the 3.6m-long, 21 kg pole and keep it horizontally motionless, a force of approximately 114N is required

Explanation:

The subject question is a classic example of Torque problem specific to Physics, which involves the concepts of force, weight, and distance. To keep the pole motionless and horizontally balanced, the force you exert must counterbalance the torque due to the pole's weight. Assuming the pole is uniform, its center of gravity (cg) is at its midpoint, 1.8m from each end. The weight of the pole acts downward at this midpoint, providing a clockwise torque about the point of support, which is the fence post.

This torque is calculated as Torque = r * F = 1.8m (distance from fence post to cg) * Weight of pole = 1.8m * 21kg * 9.8m/s² (gravitational acceleration) = ~370 N.m. As the pole is motionless, the total torque about any point must be zero. Hence, the counter-clockwise torque provided by the force you exert is equal to the clockwise torque due to the weight of the pole. Using the distance from the point of your hold to the fence post (3.25m) we can calculate the force you need to exert: Force = Torque/distance = 370 N.m/3.25m = ~114N.

Learn more about Torque here:

brainly.com/question/25708791

#SPJ11

What two statements are true about energy transformations

Answers

Answer:

First statement:

Energy can neither be created nor destroyed.

Second statement:

Energy can be converted from one form to another.

Explanation:

According to the law of conservation of energy:energy can neither be created nor destroyed but can be converted from one form to another