The tool that can be used to depict main causes for an identified quality problem, subdivided into categories represented as machines, materials, methods, and manpower, is called a ____________.

Answers

Answer 1
Answer: It is called an Cause-and-effect diagram.

Related Questions

The Rappahannock River near Warrenton, VA, has a flow rate of 3.00 m3/s. Tin Pot Run (a pristine stream) discharges into the Rappahannock at a flow rate of 0.05 m3/s. To study mixing of the stream and river, a conserva- tive tracer is to be added to Tin Pot Run. If the instruments that can mea- sure the tracer can detect a concentration of 1.0 mg/L, what minimum concentration must be achieved in Tin Pot Run so that 1.0 mg/L of tracer can be measured after the river and stream mix? Assume that the 1.0 mg/L of tracer is to be measured after complete mixing of the stream and Rappa- hannock has been achieved and that no tracer is in Tin Pot Run or the Rap- pahannock above the point where the two streams mix. What mass rate (kg/d) of tracer must be added to Tin Pot Run?
If the specific surface energy for magnesium oxide is 1.0 J/m2 and its modulus of elasticity is (225 GPa), compute the critical stress required for the propagation of an internal crack of length 0.8 mm.
Aluminum alloys are made by adding other elements to aluminum to im prove its properties, such as hardness or tensile strength. The following table shows the composition of ve commonly used alloys, which are known by their alloy numbers (2024, 6061, and so on) [Kutz, 1999]. Obtain a matrix algorithm to compute the amounts of raw materials needed to pro duce a given amount of each alloy. Use MATLAB to determine how much raw material of each type is needed to produce 1000 tons of each alloy. Composition of aluminum alloys Alloy %Cu %Mg %Mn %Si %Zn 2024 6061 7005 0 7075 356.0 0 0.6 0 0 0 0 4.5 5.6 0 0.6 0 0 2.5 0.3 0
A power plant burns natural gas to supply heat to a heat engine which rejects heat to the adjacent river. The power plant produces 800 MW of electrical power and has a thermal efficiency of 38%. Determine the heat transfer rates from the natural gas and to the river, in MW.
What character string does the binary ASCII code 1010100 1101000 1101001 1110011 0100000 1101001 1110011 0100000 1000101 1000001 1010011 1011001 0100001?

Calculate how large a mass would be necessary to obtain a mechanical noise limit of [Equation] = 1 nG, 1 µG, and 1 mG if the mechanical resonance frequency is [Equation] = 100 Hz. If the mass is to be made of cube of `silicon, what would its physical dimensions be?

Answers

Answer:

Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).

The physical dimension of the silicon is 10kg

Explanation:

Using the formular, Force, F = 1/2π√k/m

At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).

Hence, F = 1/2π√mw²/m = f ( f = frequency)

∴ f = F = mg, taking g = 9.8 m/s²

100 Hz = 9.8 m/s² X m

m = 100/9.8 = 10.2kg

An aquifer has three different formations. Formation A has a thickness of 8.0 m and hydraulic conductivity of 25.0 m/d. Formation B has a thickness of 2.0 m and a conductivity of 142 m/d. Formation C has a thickness of 34 m and a conductivity of 40 m/d. Assume that each formation is isotropic and homogeneous. Compute both the overall horizontal and vertical conductivities.

Answers

Answer:

The horizontal conductivity is 41.9 m/d.

The vertical conductivity is 37.2 m/d.

Explanation:

Given that,

Thickness of A = 8.0 m

Conductivity = 25.0 m/d

Thickness of B = 2.0 m

Conductivity = 142 m/d

Thickness of C = 34 m

Conductivity = 40 m/d

We need to calculate the horizontal conductivity

Using formula of horizontal conductivity

K_(H)=(H_(A)K_(A)+H_(A)K_(A)+H_(A)K_(A))/(H_(A)+H_(B)+H_(C))

Put the value into the formula

K_(H)=(8.0*25+2,0*142+34*40)/(8.0+2.0+34)

K_(H)=41.9\ m/d

We need to calculate the vertical conductivity

Using formula of vertical conductivity

K_(V)=(H_(A)+H_(B)+H_(C))/((H_(A))/(K_(A))+(H_(B))/(K_(B))+(H_(C))/(K_(C)))

Put the value into the formula

K_(V)=(8.0+2.0+34)/((8.0)/(25)+(2.0)/(142)+(34)/(40))

K_(V)=37.2\ m/d

Hence, The horizontal conductivity is 41.9 m/d.

The vertical conductivity is 37.2 m/d.

Consider the string length equal to 7. This string is distorted by a function f (x) = 2 sin(2x) - 10sin(10x). What is the wave formed in this string? a. In=12cos (nit ) sin(max) b. 2cos(2t)sin (2x) - 10cos(10t ) sin(10x) c. n 2 sin 2x e' – 10sin 10x e

Answers

Answer:

hello your question has a missing part below is the missing part

Consider the string length equal to \pi

answer : 2cos(2t) sin(2x) - 10cos(10t)sin(10x)

Explanation:

Given string length = \pi

distorted function f(x) = 2sin(2x) - 10sin(10x)

Determine the wave formed in the string

attached below is a detailed solution of the problem

Given that the debouncing circuit is somewhat expensive in terms of hardware (2 NAND gates, 2 resistors, and a double-pole, single throw switch), describe applications where you would require switch-debouncing circuits as well as applications where you would not need to include the additional hardware for switch debouncing (in other words, applications where you can tolerate switch bouncing). Note, you cannot use the clock and clear inputs of our lab as example applications; instead you need to think of other examples.

Answers

Explanation:

One of the common application of debouncing g circuit is in microprocessors or microcontrollers or FPGA's where fast processing is required. In such cases, it is extremely important that during the limited processing cycle, the signals remains valid without debouncinng. Because debouncing can complete impact the output of the controller.

A case where debouncing can be compromised where a system is run partially through human intervention or that has different indications for one operation.

For example in a car wash management system, where green and red lights are used to indicate if a car is being washed, green light will be on and then red light means that there no car in washing que

Q1. Basic calculation of the First law (2’) (a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of heat are given off by the spring during this compression. What is the change in internal energy of the spring during the process? (b) Suppose that 100 kJ of work is done by a motor, but it also gives off 10 kJ of heat while carrying out this work. What is the change in internal energy of the motor during the process?

Answers

Answer:

(a) ΔU = 125 kJ

(b) ΔU = -110 kJ

Explanation:

(a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of heat are given off by the spring during this compression. What is the change in internal energy of the spring during the process?

The work is done to the system so w = 150 kJ.

The heat is released by the system so q = -25 kJ.

The change in internal energy (ΔU) is:

ΔU = q + w

ΔU = -25 kJ + 150 kJ = 125 kJ

(b) Suppose that 100 kJ of work is done by a motor, but it also gives off 10 kJ of heat while carrying out this work. What is the change in internal energy of the motor during the process?

The work is done by the system so w = -100 kJ.

The heat is released by the system so q = -10 kJ.

The change in internal energy (ΔU) is:

ΔU = q + w

ΔU = -10 kJ - 100 kJ = -110 kJ

Calculate the angle of banking on a bend of 100m radius so that vehicles can travel round the bend at 50km/hr without side thrust on the tyres.

Answers

Answer:

11.125°

Explanation:

Given:

Radius of bend, R = 100 m

Speed around the bend = 50 Km/hr = (5)/(18)*50 = 13.89 m/s

Now,

We have the relation

\tan\theta=(v^2)/(gR)

where,

θ = angle of banking

g is the acceleration due to gravity

on substituting the respective values, we get

\tan\theta=(13.89^2)/(9.81*100)

or

\tan\theta=0.1966

or

θ = 11.125°