In each of the three reactions between NaOH and HCl, the sign of q for the water was positive. This means the the sign of q for the reaction was ______ and the reaction was ______.

Answers

Answer 1
Answer:

Answer:

This means the the sign of q for the reaction was _NEGATIVE _____ and the reaction was _EXOTHERMIC_____.

Explanation:

In calorimetry, when heat is absorbed by the solution, the q-value of the solution will have a positive value. This means that the reaction will produce heat for the solution to absorb and thus the q-value for the reaction will be negative. This is an exothermic reaction.

Whereas, when heat is absorbed from the solution, the q-value for the solution will have a negative value. This means that the reaction will absorb heat from the solution and so the reaction is endothermic, and q value for the reaction is positive.

So, from the question, since the q-value of water is positive, it means that heat is absorbed by the solution and the reaction will produce a negative value of q and it's an exothermic reaction because the reaction produces heat for the solution.


Related Questions

What is the specific heat value of brass?
A concentration cell is constructed using two Ni electrodes with Ni2+ concentrations of 1.0 M and 1.00 � 10�4 M in the two half-cells. The reduction potential of Ni2+ is �0.23 V. Calculate the potential of the cell at 25�C if the more dilute Ni2+ solution is in the anode compartment.
Use the weather map to answer the question.Weather map with blue line with triangles pointing down and to the right. Red line with semi-circles pointing up and to the right. Red line is to the right of the blue line.© Dorling Kindersley / Universal Images Group / Image Quest 2016What does the red line indicate?A. A cold front is moving to the north and east.B. A cold front is moving to the south and west.C. A warm front is moving to the north and east.D. A warm front is moving to the south and west.
What is the mass of ammonium nitrate in 250 mL of a 75% by mass solution (density = 1.725 g/mL)?
Approximately what mass of 90sr (ti / 2 = 28.8 yr.) has the same activity as 1 g of 60co (ti / 2 = 5.26 yr.)?

2 SO2 (g) + O2 (g) 2 SO3 (g)If the TEMPERATURE on the equilibrium system is suddenly increased :The value of Kc A. IncreasesB. DecreasesC. Remains the sameThe value of Qc A. Is greater than KcB. Is equal to KcC. Is less than KcThe reaction must: A. Run in the forward direction to restablish equilibrium.B. Run in the reverse direction to restablish equilibrium.C. Remain the same. Already at equilibrium.The concentration of O2 will: A. Increase.B. Decrease.C. Remain the same.

Answers

Answer:

Part one: B. Kc decreases

Part two: B. Is equal to Kc

Part three: B. Run in the reverse direction to reestablish equilibrium

Part four: A. Increase

Explanation:

Part one: Sulfur dioxide combines with oxygen to form sulphur trioxide in an exothermic reaction. If the temperature is suddenly is increased, while the reaction is at equilibrium, the backward reaction (the endothermic one) is favored to "sweep up the excess heat". An increase in reactants means a decrease in Kc since the denominator(reactants) is becoming bigger while the numerator (products) become smaller.

Part two: Qc is a varying version of Kc. For this set of circumstances, it will be equal to Kc since Kc varies with temperature

Part three: The reaction must run in the reverse to reestablish the equilibrium.

Part four: The concentration of of oxygen will increase as more of the reactants are formed

Final answer:

The increase in temperature for this exothermic reaction will cause the value of Kc to decrease, the value of Qc to be greater than Kc, the reaction to run in the reverse direction, and the concentration of O2 to increase.

Explanation:

The given chemical reaction represents a type of equilibrium reaction, specifically an exothermic reaction, as it produces sulfur trioxide (SO3), which releases heat. According to Le Chatelier's principle, to maintain equilibrium, if a system is disturbed by an external factor, the system will adjust accordingly.

Here are my answers to the specific questions:

  1. When the temperature is increased in an exothermic reaction, the system tries to consume the excess heat by moving in the endothermic direction, which is the reverse reaction in this case. Therefore, the value of Kc decreases (B).
  2. Since the equilibrium has been disturbed, the value of Qc will not be equal to Kc. Considering more products are formed, Qc will be greater than Kc (A).
  3. As a response to the increase in temperature, to re-establish equilibrium, the reaction will run in the reverse direction (B).
  4. As the reaction goes in reverse to establish a new equilibrium, the concentration of reactants increases. Thus, the concentration of O2 will increase (A).

Learn more about Chemical Equilibrium here:

brainly.com/question/3920294

#SPJ3

assume in a different experiment, you prepare a mixture containing 10.0 M FeSCN2+, 1.0 M H+, 0.1 MFe3+ and 0.1 M HSCN. Is the initial mixture at equilibrium? If not, in what direction must the reactionproceed to reach equilibrium? (Hint: You will need to use the value of Kc you determined in the lab

Answers

Answer:

The mixture is not in equilibrium, the reaction will shift to the left.

Explanation:

Based on the equilibrium:

Fe³⁺+ HSCN ⇄ FeSCN²⁺ + H⁺

kc = 30 = [FeSCN²⁺] [H⁺] / [Fe³⁺] [HSCN]

Where [] are concentrations at equilibrium. The reaction is in equilibrium when  the ratio of concentrations = kc

Q is the same expression than kc but with [] that are not in equilibrium

Replacing:

Q = [10.0M] [1.0M] / [0.1M] [0.1M]

Q = 1000

As Q > kc, the reaction will shift to the left in order to produce Fe³⁺ and HSCN untill Q = Kc

Final answer:

The mixture's equilibrium status can be determined by comparing the reaction quotient (Q) with the equilibrium constant (Kc). If Q < Kc, the reaction proceeds to the right (products) to achieve equilibrium. If Q > Kc, the reaction proceeds to the left (reactants) to achieve equilibrium.

Explanation:

To determine if the mixture is initially at equilibrium, we need to calculate and compare the reaction quotient (Q) and the equilibrium constant (Kc) of the reaction. The reaction quotient is a measure of the relative concentrations of products and reactants at any point in time, whereas Kc, is the measure of these concentrations only at equilibrium.

Assuming that the reaction in question is: Fe3+ + HSCN ↔ FeSCN2+ + H + . In this case,

Q = [FeSCN2+]/[Fe3+][HSCN] = 10 / (0.1 * 0.1) = 1000. If Kc is less than 1000, the reaction is not at equilibrium and will need to proceed to the left (reactants) to reach equilibrium. Conversely, if Kc is greater than 1000, the reaction is not at equilibrium and will need to proceed to the right (products).

Learn more about Chemical Equilibrium here:

brainly.com/question/32227445

#SPJ11

In the equilibrium system described by: PO43-(aq) + H2O(1) = HPO42-(aq) + OH-(aq) Brønsted-Lowry theory would designate: A) PO43- and H20 as the bases B) H20 and OH as a conjugate pair C) HPO42- and OH"" as the acids D) HPO42- and H20 as a conjugate pair E) PO43-as amphiprotic

Answers

Answer:

The correct option is:  B) H₂0 and OH⁻ as a conjugate pair

Explanation:

According to Brønsted-Lowry theory, theacids are the chemical substances that form a conjugate base by donating a proton and bases are the chemical substances that form conjugate acid by accepting a proton.

In the given chemical reaction: PO₄³⁻(aq) + H₂O(l) ⇄ HPO₄²⁻(aq) + OH⁻(aq)

According to Brønsted-Lowry theory, PO₄³⁻ and OH⁻ are bases. Whereas, H₂O and HPO₄²⁻ are acids.

Also, PO₄³⁻ and HPO₄²⁻ are the conjugate acid-base pair; and H₂O and OH⁻ are the conjugate acid-base pair.

Consider the balanced equation for the following reaction:7O2(g) + 2C2H6(g) → 4CO2(g) + 6H2O(l)
Determine the amount of CO2(g) formed in the reaction if 8.00 grams of O2(g) reacts with an excess of C2H6(g) and the percent yield of CO2(g) is 90.0%.

Answers

Answer: The amount of carbon dioxide formed in the reaction is 5.663 grams

Explanation:

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}     .....(1)

Given mass of oxygen gas = 8 g

Molar mass of oxygen gas = 32 g/mol

Putting values in equation 1, we get:

\text{Moles of oxygen gas}=(8g)/(32g/mol)=0.25mol

For the given chemical equation:

7O_2(g)+2C_2H_6(g)\rightarrow 4CO_2(g)+6H_2O(l)

By Stoichiometry of the reaction:

7 moles of oxygen gas produces 4 moles of carbon dioxide

So, 0.25 moles of oxygen gas will produce = (4)/(7)* 0.25=0.143mol of carbon dioxide

Now, calculating the mass of carbon dioxide from equation 1, we get:

Molar mass of carbon dioxide = 44 g/mol

Moles of carbon dioxide = 0.143 moles

Putting values in equation 1, we get:

0.143mol=\frac{\text{Mass of carbon dioxide}}{44g/mol}\n\n\text{Mass of carbon dioxide}=(0.143mol* 44g/mol)=6.292g

To calculate the experimental yield of carbon dioxide, we use the equation:

\%\text{ yield}=\frac{\text{Experimental yield}}{\text{Theoretical yield}}* 100

Percentage yield of carbon dioxide = 90 %

Theoretical yield of carbon dioxide = 6.292 g

Putting values in above equation, we get:

90=\frac{\text{Experimental yield of carbon dioxide}}{6.292g}* 100\n\n\text{Experimental yield of carbon dioxide}=(90* 6.292)/(100)=5.663g

Hence, the amount of carbon dioxide formed in the reaction is 5.663 grams

Organize the following solvents by increasing polarity A. Dichloromethane, ethanol, ethyl acetate, diethyl ether
B. Diethyl ether, dichloromethane, ethyl acetate, ethanol
C. Ethyl acetate, ethanol, dichloromethane, diethyl ether
D. Ethanol, ethyl acetate, diethyl ether, dichloromethane

Answers

Answer:

B. Diethyl ether, dichloromethane, ethyl acetate, ethanol

Explanation:

The polarity of solvents can be determined by their polarity indexes. Polarity index is defined as the measure of the ability of the solvent to interact with various polar test solutes.

Diethyl ether is the least polar with a polarity index of 2.8

Dichloromethane with a polarity index of  3.1

Ethyl acetate with a polarity index of 4.3

Ethanol is the most polar with a polarity index of 5.2

The differences in polarities of these solvents is due to their structure. Polar solvents have large dipole moments because they contain bonds between atoms with very different electronegativities, such as oxygen and hydrogen.

Because of the two non-polar methyl groups in diethyl ether, it is not as polar as dichloromethane which has two electronegative chlorine atoms attached to a carbon atom. Similarly too, because diethyl ether has two  strongly electronegative oxygen atoms sharing a bond with carbon, it has a larger dipole moment than dichloromethane. Ethanol has an oxygen hydrogen bond which has the largest dipole moment, thus, it is the most polar of the given solvents.

Ammonia is produced by the reaction of nitrogen and hydrogen: N2(g) + H2(g)  NH3(g)(a) Balance the chemical equation.
(b) Calculate the mass of ammonia produced when 35.0g of nitrogen reacts with hydrogen.

Answers

Answer:

a) N2 (g) + H2 = 2 NH3

b) You have to state the mass of hydrogen