If 35.2 g of magnesium react with excess hydrochloric acid, how many grams of magnesium chloride are produced? Mg(s) + 2 HCl(aq) → MgCl2(aq) + H2(aq)

Answers

Answer 1
Answer:

Answer:

139.33 g of magnesium chloride, MgCl2.

Explanation:

We'll begin by writing the balanced equation for the reaction. This is illustrated below:

Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(aq)

Next, we shall determine the mass of Mg that reacted and the mass of MgCl2 from the balanced equation.

This is illustrated below:

Molar mass of Mg = 24 g/mol

Mass of Mg from the balanced equation = 1 x 24 = 24 g

Molar mass of MgCl2 = 24 + (2x35.5) = 95 g/mol

Mass of MgCl2 from the balanced equation = 1 x 95 = 95 g

From the balanced equation above,

24 g of Mg reacted to produce 95 g of MgCl2.

Finally, we shall determine the mass of MgCl2 produced by reacting 35.2 g of Mg.

This can be obtained as follow:

From the balanced equation above,

24 g of Mg reacted to produce 95 g of MgCl2.

Therefore, 35.2 g of Mg will react to produce = (35.2 x 95)/24 = 139.33 g of MgCl2.

From the calculations made above, 139.33 g of magnesium chloride, MgCl2 were produced.


Related Questions

.......state Hess law​
Which part of the electromagnetic spectrum is nearest to x rays
A well-insulated tank contains concentrated HCl solution in water. If more water is added to this tank the temperature of the system will __________.Select one:a. increaseb. decreasec. no changed. cannot tell
An isotope contains 26 protons, 24 electrons, and 32 neutrons. What is the identity of the isotope
How many molecules are shown in the chemical formula pictured? H3PO4A) 1B) 3C) 4D) 7

The correct electron configuration for magnesium is: 1s 22s 22p 63s 3 True False

Answers

Answer:

False

Explanation:

Magnesium is the element of second group and third period. The electronic configuration of magnesium is - 2, 8, 2 or 1s^22s^22p^63s^2

There are 2 valence electrons of magnesium.

Only the valence electrons are shown by dots in the Lewis structure.  

As, stated above, there are only two valence electrons of magnesium, so in the Lewis structure, two dots are made around the magnesium symbol.

Given that the electronic configuration is:- 1s^22s^22p^63s^3.

Orbital s cannot accommodate 3 electrons and also in magnesium it has 3s^2. Hence, the statement is false.

g n the following three compounds(1,2,3) arrange their relative reactivity towards the reagent CH3Cl / AlCl3. Justify your order

Answers

Answer:

3 > 2> 1

Explanation:

Aromatic compounds undergo electrophilic substitution reaction which passes through a positively charged intermediate to yield the product.

Substituted benzenes may be more or less reactive towards electrophilic aromatic substitution than benzene molecule depending on the nature of the substituent.

Certain substituents increase the ease of reaction of benzene towards aromatic substitution.

If we look at the compounds closely, we will notice that toluene reacts readily with CH3Cl / AlCl3. This is because, the methyl group is electron donating hence it stabilizes the positively charged intermediate produced in the reaction.

Carbonyl compounds are electron withdrawing substituents hence they decrease the magnitude of the positive charge and hence decrease the rate of electrophilic aromatic substitution.

A binary feed mixture contains 40 mol% hexane (A) and 60 mol% toluene (B) is to be separated continuously into two products D (distillate) and B (bottoms) in a distillation unit. Distillate D is 90 mol% hexane and the bottoms B is 90 mol% toluene. Using a feed flow rate of 100 lbmoh as basis, compute the flow rates of products B and D in: (a) lbmol/h, and (b) kmol/h.

Answers

Answer:

a) D = 33.44 Lbmol/h

⇒ B = 62.56 Lbmol/h

b) D = 16.848 Kmol/h

⇒ B = 28.152 Kmol/h

Explanation:

global balance:

  • F = D + B........................(1)

∴ F = 100 Lbmol/h

balance per component:

A: 0.4*F = 0.9*D + 0.1*B = 0.4*100 = 40 Lbmol/h..............(2)

B: 0.6*F = 0.1*D + 0.9*B = 0.6*100 = 60 Lbmol/h..............(3)

from (2):

⇒ 0.9*D = 40 - 0.1*B

⇒ D = ( 40 - 0.1*B ) / 0.9............(4)

(4) in (3):

⇒ 0.1*((40-0.1*B)/0.9) + 0.9*B = 60

⇒ B = 62.56 Lbmol/h............(5)

(5) in (1):

⇒ D = 100 - B

⇒ D = 37.44 Lbmol/h

∴ Lbmol = 0.45 Kmol

⇒ B = 62.56 Lbmol/h * ( 0.45 Kmol/ Lbmol ) = 28.152 Kmol/h

⇒ D = 37.44 Lbmol/h * ( 0.45 Kmol/h ) = 16.848 Kmol/h

Sodium tert-butoxide (NaOC(CH3)3) is classified as bulky and acts as Bronsted Lowry base in the reaction. It is reacted with 2-chlorobutane. Based on this information, the major organic product(s) of this reaction are expected to be _____.

Answers

Answer:but-1-ene

Explanation:This is an E2 elimination reaction .

Kindly refer the attachment for complete reaction and products.

Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.

Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .

As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.

Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.

2-butene is more thermodynamically6 stable as compared to 1-butene  

The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.

The rate constant of the elementary reaction CH3OCH3(g) CH4(g) +CH2O(g) is k = 8.33×10-6 s-1 at 427°C, and the reaction has an activation energy of 245 kJ mol-1. (a) Compute the rate constant of the reaction at a temperature of 545°C. s-1 (b) At a temperature of 427°C, 8.32×104 s is required for half of the CH3OCH3 originally present to be consumed. How long will it take to consume half of the reactant if an identical experiment is performed at 545°C?

Answers

Answer:

(a) The rate constant is 3.61×10^-3 s^-1

(b) 7.12×10^4 s

Explanation:

(a) Log (K2/K1) = Ea/2.303R × [1/T1 - 1/T2]

K1 = 8.33×10^-6 s^-1

Ea = 245 kJ = 245,000 J

R = 8.314 J/mol.K

T1 = 427°C = 427+273 = 700 K

T2 = 545°C = 546+273 = 818 K

Log (K2/8.33×10^-6) = 245,000/2.303 × [1/700 - 1/818]

Log (K2/8.33×10^-6) = 2.637

K2/8.33×10^-6 = 10^2.637

K2 = 8.33×10^-6 × 433.51 = 3.61×10^-3 s^-1

(b) The relationship between temperature and the time required for reactants to be consumed is inverse

t2 = T1t1/T2

T1 = 427 °C = 700 K

t1 = 8.32×10^4 s

T2 = 545 °C = 818 K

t2 = 700×8.32×10^4/818 = 7.12×10^4 s

Write the equilibrium expression, calculate KEQ and then tell where the equilibrium lies: Fe (s) + O2 (g) ↔ Fe2O3 (s) In a 2.0 L Container At equilibrium: Fe = 1.0 mol O2 = 1.0 E-3 mol Fe2O3 = 2.0 mol

Answers

Answer:

The value of Keq is 4e-9. See the solution below

Explanation:

We need to balanced rhe equation and use the formula of the Keq