Assuming 100% dissociation, which of the following compounds is listed incorrectly with its van't Hoff factor i? Al2(SO4)3, i = 4 NH4NO3, i = 2 Mg(NO3)2, i = 3 Na2SO4, i = 3 Sucrose, i = 1

Answers

Answer 1
Answer:

Answer:

- Aluminium sulfate Al2(SO4)3 dissociates in two aluminium ions and three sulfate ions, therefore, van't Hoff factor is 5 (incorrect).

Explanation:

Hello,

In this case, since the van't Hoff factor is related with the species that result from the ionization of a chemical compound, we can see that that

- Aluminium sulfate Al2(SO4)3 dissociates in two aluminium ions and three sulfate ions, therefore, van't Hoff factor is 5 (incorrect).

- Ammonium nitrate NH4NO3 dissociates in one ammonium ions and one nitrate ion, therefore, van't Hoff factor is 2 (correct).

- Sodium sulfate Na2SO4 dissociates in two sodium ions and one sulfate, therefore, van't Hoff factor is 3 (correct).

- Sucrose is not ionized, therefore, van't Hoff factor is 1 (correct).

Best regards.


Related Questions

Grunge is a rock style from Detroit. True False
What formula was used to find the answer
Please help!!which oneeeee
Explain why HCl can be a strong electrolyte, but a dilute HCl solution can be a poor conductor?
Write for empiricalformula Fe2+, cr4+, cl-, O2-

In a lab experiment 80.0 g of ammonia [NH3] and 120 g of oxygen are placed in a reaction vessel. At the end of the reaction 72.2 g of water are obtained. Determine the percent yield of the reaction.

Answers

The percent yield of the reaction : 89.14%

Further explanation

Reaction of Ammonia and Oxygen in a lab :

4 NH₃ (g) + 5 O₂ (g) ⇒ 4 NO(g)+ 6 H₂O(g)

mass NH₃ = 80 g

mol NH₃ (MW=17 g/mol):

(80)/(17)=4.706

mass O₂ = 120 g

mol O₂(MW=32 g/mol) :

\tt (120)/(32)=3.75

Mol ratio of reactants(to find limiting reatants) :

\tt (4.706)/(4)/ (3.75)/(5)=1.1765/ 0.75\rightarrow O_2~limiting~reactant(smaller~ratio)

mol of H₂O based on O₂ as limiting reactants :

mol H₂O :

\tt (6)/(5)* 3.75=4.5

mass H₂O :

4.5 x 18 g/mol = 81 g

The percent yield :

\tt \%yield=(actual)/(theoretical)* 100\%\n\n\%yield=(72.2)/(81)* 100\%=89.14\%

Help me question 5 ASAP

Answers

I think it’s B.
I might be wrong, I’m just kinda going off based a little research and it says that it only happens in reptiles and teleost fish. The only option on there that’s related to it is the leatherback turtle.

What type of matter is pepperoni pizza

Answers

Answer:

Heterogeneous Mixture. Have a good day! =)

Explanation:

Which of the following chemicals is potentially dangerous?A. ammonium nitrate

B. ethyl alcohol

C.sulfuric acid

D.All chemicals are potentially dangerous

Answers

Answer:

D.All chemicals are potentially dangerous

Explanation:

No chemical is toxicologically neutral

Perform the calculation and report the answer using the proper number of significant figures. Make sure the answer is rounded correctly. 1.012×10^-3 J/(0.015456 g)(298.3682−298.3567)K

Answers

Answer:

=5.694(J)/(g*K)

Explanation:

Hello,

In this case, since the result of the operation between two magnitudes is shown with the same significant figures of the shortest number, we obtain:

1.012x10^(-3) J/[(0.015456 g)(298.3682-298.3567)]K

Next, we proceed as follows:

=0.065476J/[(g)(20.0115K)]\n\n=5.693582(J)/(g*K)

Nevertheless, since 1.012 is the shortest number and has four significant figures, the result is rounded to four significant figures, that is until the three but it rounded due to the fact that the next digit is five:

=5.694(J)/(g*K)

Regards.

Determine the (H+), pH, and pOH of a solution with an [OH-] of 9.5 x 10-10 M at 25 °C. M pH =

Answers

Answer : The concentration of H^+ ion, pH and pOH of solution is, 1.05* 10^(-5)M, 4.98 and 9.02 respectively.

Explanation : Given,

Concentration of OH^- ion = 9.5* 10^(-10)M

pH : It is defined as the negative logarithm of hydrogen ion or hydronium ion concentration.

The expression used for pH is:

pH=-\log [H^+]

First we have to calculate the pH.

pOH=-\log [OH^-]

pOH=-\log (9.5* 10^(-10))

pOH=9.02

The pOH of the solution is, 9.02

Now we have to calculate the pH.

pH+pOH=14\n\npH=14-pOH\n\npH=14-9.02=4.98

The pH of the solution is, 4.98

Now we have to calculate the H^+ concentration.

pH=-\log [H^+]

4.98=-\log [H^+]

[H^+]=1.05* 10^(-5)M

The H^+ concentration is, 1.05* 10^(-5)M

Answer:

pOH = 9.022,  [H⁺] = 1.5×10⁻⁵ M, pH = 4.978

Explanation:

Given: [OH⁻] = 9.5 × 10⁻¹⁰ M,  T= 25°C

As, pOH = - log [OH⁻]

pOH = - log (9.5 x 10⁻¹⁰) = 9.022

The self-ionisation constant of water is given by

Kw = [H⁺] [OH⁻] and pKw = pH + pOH

Since, at room temperature (25°C): Kw = 1.0 × 10⁻¹⁴ and pKw = 14.

Therefore, Kw = [H⁺] [OH⁻] = 1.0 × 10⁻¹⁴

[H⁺] = (1.0 × 10⁻¹⁴) ÷ [OH⁻] = (1.0 ×10⁻¹⁴)  ÷ [9.5 × 10⁻¹⁰] = 0.105 ×10⁻⁴ = 1.5×10⁻⁵ M

also,

pH + pOH = pKw = 14

pH = 14 - pOH = 14 - 9.022 = 4.978