An ideal gas is at a temperature of 320 K. What is the average translational kinetic energy of one of its molecules

Answers

Answer 1
Answer:

Answer:

6.624 x 10^-21 J

Explanation:

The temperature of the ideal gas = 320 K

The average translational energy of an ideal gas is gotten as

K_(ave) = (3)/(2)K_(b)T

where

K_(ave)  is the average translational energy of the molecules

K_(b) = Boltzmann constant = 1.38 × 10^-23 m^2 kg s^-2 K^-1

T is the temperature of the gas = 320 K

substituting value, we have

K_(ave) = (3)/(2) * 1.38*10^(-23) * 320 = 6.624 x 10^-21 J


Related Questions

g During a collision with a wall, the velocity of a 0.4 KgKg ball changes from 25 m/sm/s towards the vall to 12 m/sm/s away from the wall. If the time the ball was in contact with the call was 0.5 secsec , what was the magnitude of the avarage force applied to the ball
Tell whether the statement below is a scalar or a vector
1. Explain the change of state from solid dry ice to carbon dioxide gas.2. The motion of the particles in dry ice and carbon dioxide gas.3. Explain how the original mass of dry ice compares with the mass of carbon dioxide gas.
What is the weight of a 45 kg box?
A 1 225.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 9 700.0 kg truck moving in the same direction at 20.000 m/s. The velocity of the car right after the collision is 18.000 m/s to the east.(a) What is the velocity of the truck right after the collision? (Give your answer to five significant figures.) m/s east (b) What is the change in mechanical energy of the cartruck system in the collision? J (c) Account for this change in mechanical energy.

Name the four forces in physics?​

Answers

Answer:

Gravitational

Electrostatic

magnetic

Frictional

gravitational

electrostatic

magnetic

frictional

hope it helps

pls mark as brainliest

A 0.700-kg particle has a speed of 1.90 m/s at point circled A and kinetic energy of 7.20 J at point circled B. (a) What is its kinetic energy at circled A? 1.2635 Correct: Your answer is correct. J (b) What is its speed at circled B? 4.54 Correct: Your answer is correct. m/s (c) What is the net work done on the particle by external forces as it moves from circled A to circled B?

Answers

Answer:

a). E_(kA)=1.2635 J

b). V_(B)=4.535(m)/(s)

c). ΔE_(t)=8.4635 J

Explanation:

ΔE=kinetic energy

a).

E_(kA)=(1)/(2)*m*v_(A) ^(2) \n v_(A)=1.9 (m)/(s)\n m=0.70kg\nE_(kA)=(1)/(2)*0.70kg*(1.9 (m)/(s))^(2) \nE_(kA)=1.2635 J

b).

E_(kB)=(1)/(2)*m*v_(B) ^(2)

V_(B)^(2)=(E_(kB)*2)/(m) \nV_(B)=\sqrt{(E_(kB)*2)/(m)} \nV_(B)=\sqrt{(7.2J*2)/(0.70kg)} \nV_(B)=4.53 (m)/(s)

c).

net work= EkA+EkB

E_(t)=E_(kA)+ E_(kB)\nE_(t)=1.2635J+7.2J\nE_(t)=8.4635J

A 120-V rms voltage at 60.0 Hz is applied across an inductor, a capacitor, and a resistor in series. If the peak current in this circuit is 0.8484 A, what is the impedance of this circuit

Answers

Answer:

200 \Omega

Explanation:

The computation of the impedance of the circuit is shown below:

Provided that

RMS voltage = 120 v

Frequency = 60.0 Hz

RMS current = 0.600 A

Based on the above information, the formula to compute the impedance is

Z=(V_(max))/(I_(peak))

where,

V_(max) = √(2) * V_(rms)

= √(2) * 120

= 169.7 V

And, I_Peak = 0.8484

Now placing these above values to the formula

So, the impedance of the circuit is

= (169.7)/(0.8484)

= 200 \Omega

A bridge is made with segments of concrete 91 m long (at the original temperature). If the linear expansion coefficient for concrete is 1.2 × 10−5 ( ◦C)−1 , how much spacing is needed to allow for expansion for an increase in temperature of 56◦F? Answer in units of cm.

Answers

Answer:

change in length is 3.397 cm

Explanation:

Given data

long = 91 m = 9100 cm

coefficient for concrete (a) =  1.2 × 10−5 ( ◦C)−1

temperature = 56 F = (56× 5/9) ◦C

to find out

how much spacing is needed to allow

solution

we know allow space is given by this formula

change in length = coefficient for concrete × given length × temperature     .............1

put all value in equation 1

change in length = 1.2 × 10−5  × 9100 × (56× 5/9)

change in length = 3.397 cm

so change in length is 3.397 cm

Which is the best description of the scientific theory

Answers

Explanation:

a scientific theory is a well substantiated explanation of some aspect of the nature world, based on a body of facts that have been repeatedly confirmed through observation and experiment. search fact-supported theories are not "guesses" but reliable account of the real world .

In the calorimetry experiment which energy will be calculated during the heat exchange if water is used?

Answers

From the coffee cup to the thermometer

The assumption behind the science of calorimetry is that the energy gained or lost by the water is equal to the energy lost or gained by the object under study. So if an attempt is being made to determine the specific heat of fusion of ice using a coffee cup calorimeter, then the assumption is that the energy gained by the ice when melting is equal to the energy lost by the surrounding water. It is assumed that there is a heat exchange between the iceand the water in the cup and that no other objects are involved in the heat exchanged. This statement could be placed in equation form as

Qice = - Qsurroundings = -Qcalorimeter

The role of the Styrofoam in a coffee cup calorimeter is that it reduces the amount of heat exchange between the water in the coffee cup and the surrounding air. The value of a lid on the coffee cup is that it also reduces the amount of heat exchange between the water and the surrounding air. The more that these other heat exchanges are reduced, the more true that the above mathematical equation will be. Any error analysis of a calorimetry experiment must take into consideration the flow of heat from system to calorimeter to other parts of the surroundings. And any design of a calorimeter experiment must give attention to reducing the exchanges of heat between the calorimeter contents and the surroundings.

The energy calculated while dealing with the calorimeter experiment are the latent heat of vaporization, latent heat of fusion and the heat required to change the temperature of the substances.

Further Explanation:

The calorimeter works on the principle of conservation of energy. The amount of heat given by one part of the system is equal to the amount of heat gained by another part provided that the calorimeter does not loss any heat to the environment.

Consider that ice is mixed with water at some temperature. Then the water being at higher temperature losses heat to the ice at lower temperature. The ice gains the heat from the water and the system reaches an equilibrium at which the solution of ice and water has the same amount of energy at a particular temperature.

The different types of energies dealt with in the calorimetry experiment are as follows:

Latent heat of fusion:

The amount of energy required by a body when it is melted from its frozen state or freezes from its melted state is termed as the latent heat of fusion.

For example:  

The small amount of ice is mixed with water in a calorimeter. Here, the ice requires the latent heat of fusion that leads to the melting of ice and converts it into water.

Latent heat of vaporization:

The amount of heat required to convert one gram of liquid to vapor without raising its temperature is known as latent heat of vaporization.

For example:

The water is boiling at   in a calorimeter. Here, the water requires latent heat of vaporization which leads to the vaporization of water and convert it into vapors.

Thus, the latent heat of fusion, latent heat of vaporization and the heat required to change the temperature of the substance are the energies measured with the calorimeter.

Learn more:

1.  Transnational kinetic energy brainly.com/question/9078768.

2.  Expansion of gas brainly.com/question/9979757.

3. Conservation of momentum brainly.com/question/9484203.

Answer Details:

Grade: College

Subject: Physics

Chapter: Heat and Energy

Keywords:

Heat, energy, calorimeter, latent heat, vaporization, fusion, experiment, temperature, melting, boiling, liquid, vapor, evaporation, condensation, freeze.