The combustion of 0.295 kg of propane produces 712 g of carbon dioxide. What is the percent yield of carbon dioxide? ( Make sure to balance equation) C3H8 (g)+ 029) à co2 g H200 0a. 124%
b. 41 .4%
c. 80.5%
d. 0.805 %

Answers

Answer 1
Answer:

Answer:

Option C. 80.5%

Explanation:

We'll begin by writing the balanced equation for the reaction. This is illustrated below:

C3H8 + 5O2 —> 3CO2 + 4H2O

Next, we shall determine the mass of C3H8 that reacted and the mass of CO2 produced from the balanced equation.

This is illustrated below:

Molar mass of C3H8 = (3x12) + (8x1) = 36 + 8 = 44 g/mol

Mass of C3H8 from the balanced equation = 1 x 44 = 44 g

Molar mass of CO2 = 12 + (2x16) = 12 + 32 = 44 g/mol

Mass of CO2 from the balanced equation = 3 x 44 = 132 g

From the balanced equation above,

44 g of C3H8 reacted to produce 132 g of CO2.

Next, we shall determine the theoretical yield of CO2.

This can be obtained as shown below:

From the balanced equation above,

44 g of C3H8 reacted to produce 132 g of CO2.

Therefore, 0.295 kg (i.e 295 g) will react to produce = (295 x 132)/44 = 885 g of CO2.

Therefore, the theoretical yield of CO2 is 885 g.

Finally, we shall determine the percentage yield of CO2 as follow:

Actual yield of CO2 = 712 g

Theoretical yield of CO2 = 885 g

Percentage yield of CO2 =..?

Percentage yield = Actual yield /Theoretical yield x 100

Percentage yield of CO2 = 712/885 x 100

Percentage yield = 80.5%

Therefore, the percentage yield of CO2 is 80.5%.


Related Questions

The Michael reaction is a conjugate addition process wherein a nucleophilic enolate anion (the donor) reacts with an α,β-unsaturated carbonyl compound (the acceptor). The best Michael reactions are those that take place when a particularly stable enolate anion is formed via treatment of the donor with a strong base. Alternatively, milder conditions can be used if an enamine is chosen as the donor, this variant is termed the Stork reaction. In the second step, the donor adds to the β-carbon of the acceptor in a conjugate addition, generating a new enolate. The enolate abstracts a proton from solvent or from a new donor molecule to give the conjugate addition product. Draw curved arrows to show the movement of electrons in this step of the mechanism.
What is the speed of a rocket in units of meter/ second if its travels at a speed of 1000 km/minutes?
What is the molarity of a 27.0% (v/v) aqueous ethanol solution? the density of ethanol (c2h6o, molar mass 46.07 g/mol) is 0.790 g/ml?
Ne belongs to what group. a. noble gases, b.alkali metals, c. halogens, d. alkaline earth metals​
Pls help ASAP I will give brainliest

The following data is given to you about a reaction you are studying: Overall reaction: 2A  D Proposed mechanism: Step 1 A + B  C (slow) Step 2 C + A  D + B (fast) [A]o = 0.500 M [B]o = 0.0500 M [C]o = 0.500 M [D]o = 1.50 M This reaction was run at a series of temperatures and it was found that a plot of ln(k) vs 1/T (K) gives a straight line with a slope of -982.7 and a Y intercept of -0.0726. What is the initial rate of the reaction at 298K?

Answers

Answer : The initial rate of the reaction at 298 K is, 8.6* 10^(-4)M/s

Explanation :

The Arrhenius equation is written as:

K=A* e^{(-Ea)/(RT)}

Taking logarithm on both the sides, we get:

\ln k=-(Ea)/(RT)+\ln A             ............(1)

where,

k = rate constant

Ea = activation energy

T = temperature

R = gas constant  = 8.314 J/K.mole

A = pre-exponential factor

The equation (1) is of the form of, y = mx + c i.e, the equation of a straight line.

Thus, if we plot a graph of \ln k vs (1)/(T) then the graph shows a straight line with negative slope. That means,

Slope of the line = -(Ea)/(R)

And,

Intercept = \ln A

As we are given that:

Slope of the line = -982.7 = -(Ea)/(R)

Intercept = -0.0726 = \ln A

Now we have to calculate the value of rate constant by putting the value of slope, intercept and temperature (298K) in equation 1, we get:

\ln k=-(982.7)/(298)+(-0.0726)

\ln k=-3.37

k=0.0344s^(-1)

The value of rate constant is, 0.0344s^(-1)

Now we have to calculate the initial rate of the reaction at 298 K.

As we know that the slow step is the rate determining step. So,

The slow step reaction is,

A+B\rightarrow C

The expression of rate law for this reaction will be,

Rate=k[A][B]

As we are given that:

[A] = 0.500 M

[B] = 0.0500 M

k = 0.0344s^(-1)

Now put all the given values in the rate law expression, we get:

Rate=(0.0344)* (0.500)* (0.0500)

Rate= 8.6* 10^(-4)M/s

Therefore, the initial rate of the reaction at 298 K is, 8.6* 10^(-4)M/s

Three resonance structures of the given anion are possible. One is given, but it is incomplete. Complete the given structure by adding nonbonding electrons and formal charges. Draw the two remaining resonance structures (in any order), including nonbonding electrons and formal charges. Omit curved arrows.

Answers

Answer:

Explanation:

The missing incomplete resonance structure is attached in the image below. From there, we can see the addition of the nonbonding electrons and its' formal charge which makes the resonance structure a complete resonance structure. The others two resonance structure that can be derived from the complete structure is also shown in the image. Out of these three structures, the structure that contributes most to the hybrid is the structure with the negative charge on the oxygen.

Final answer:

To complete the provided resonance structure, add nonbonding electrons and formal charges. Then, draw the two remaining resonance structures by distributing the nonbonding electrons and formal charges differently.

Explanation:

When completing the provided incomplete structure of the anion, you need to add nonbonding electrons and formal charges to make it accurate. Then, draw the two remaining resonance structures by distributing the nonbonding electrons and formal charges differently. To illustrate, let's consider the example of a nitrate ion (NO3-). The complete structure of the provided resonance form would have a double bond between the central nitrogen atom and one of the oxygen atoms, with two lone pairs on the nitrogen atom. The remaining two resonance structures would have different double bond oxygen-nitrogen combinations.

Learn more about Resonance structures here:

brainly.com/question/35369195

#SPJ3

1. The atomic number of an element isdetermined by the number of:
a. protons.
b. electrons.
C. neutrons.
d. isotopes.

Answers

The answer is: A, protons

Answer:

Atomic number is protons

Explanation:

Protons = positive charge

Use molecular orbital theory to determine whether f22+ is paramagnetic or diamagnetic.

Answers

We have to know whether F₂²⁺ is paramagnetic or diamagnetic.

F₂²⁺ is paramagnetic.

If number of unpaired electron in any species is equal to zero, the species is diamagnetic and the species contains unpaired electrons, then the species is paramagnetic.

The magnetic property can be explained using molecular orbital theory.

Total number of electron present in   F₂²⁺ is equal to 16 (i.e, 9+9-2). From the molecular orbital electronic configuration, number of electrons present in pi orbitals present is equal to 2.

So,  F₂²⁺ is paramagnetic.

Answer : F_2^(2+) is paramagnetic.

Explanation :

According to the molecular orbital theory, the general molecular orbital configuration will be,

(\sigma_(1s)),(\sigma_(1s)^*),(\sigma_(2s)),(\sigma_(2s)^*),[(\pi_(2p_x))=(\pi_(2p_y))],(\sigma_(2p_z)),[(\pi_(2p_x)^*)=(\pi_(2p_y)^*)],(\sigma_(2p_z)^*)

As there are 9 electrons present in fluorine.

The number of electrons present in F_2^(2+) molecule = 2(9) - 2 = 16

The molecular orbital configuration of F_2^(2+) molecule will be,

(\sigma_(1s))^2,(\sigma_(1s)^*)^2,(\sigma_(2s))^2,(\sigma_(2s)^*)^2,(\sigma_(2p_z))^2,[(\pi_(2p_x))^2=(\pi_(2p_y))^2],[(\pi_(2p_x)^*)^1=(\pi_(2p_y)^*)^1],(\sigma_(2p_z)^*)^0

Paramagnetic compounds : They have unpaired electrons.

Diamagnetic compounds : They have no unpaired electrons that means all are paired.

The number of unpaired electron in molecule is, 2. So, this is paramagnetic. That means, more the number of unpaired electrons, more paramagnetic.

Thus, is paramagnetic.

Calculate the molarity of a solution that contains 0.50 g of NaCl dissolved in 100mL of solution?

Answers

The molarity is an important method which is used to calculate the concentration of a solution. The molarity of a solution that contains 0.50 g of NaCl dissolved in 100mL of solution is 0.085 M.

What is molarity?

The molarity of a solution is defined as the number of moles of the solute present per litre of the solution. It is an most important method to calculate the concentration of a binary solution. It is represented as 'M'.

The equation used to calculate the molarity is:

Molarity = Number of moles of the solute / Volume of the solution in litres

1L = 1000 mL

100 mL = 0.1 L

Number of moles (n) = Given mass / Molar mass

n = 0.50 / 58.44 = 0.008

Molarity = 0.0085 /  0.1  = 0.085 M

Thus the molarity of the solution is 0.085 M.

To know more about molarity, visit;

brainly.com/question/16587536

#SPJ3

The answer is 0.085470.. mol/dm^3. I might have made some mistakes but I have included the working out so do try it yourself to make sure it’s right!

Many drugs are sold as their hydrochloric salts (r2nh2+cl−), formed by reaction of an amine (r2nh) with hcl. part 1 out of 4 draw the major organic product formed from the formation of acebutolol with hcl. acebutolol is a β blocker used to treat high blood pressure. omit any inorganic counterions.

Answers

Answer: -

Many drugs are sold as their hydrochloric salts (RNH₃⁺Cl⁻), formed by reaction of an amine (RNH₂) with HCl.

It is done because amines are generally liquids. But their hydrochloric salts are solid. A solid drug is always more preferable for drug companies as their handling and packaging are easier.

Acebutolol consists of one amide functionality as well as a secondary amine functionality.

When HCl is added, the lone pairs of the nitrogen of the secondary amine attacks it, leading to the formation of it's hydrochloric salts.