Two particles, one with charge −7.97×10−6 C and the other with charge 6.91×10−6 C, are 0.0359 m apart. What is the magnitude of the force that one particle exerts on the other?

Answers

Answer 1
Answer:

Answer:

-384.22N

Explanation:

From Coulomb's law;

F= Kq1q2/r^2

Where;

K= constant of Coulomb's law = 9 ×10^9 Nm^2C-2

q1 and q2 = magnitudes of the both charges

r= distance of separation

F= 9 ×10^9 × −7.97×10^−6 × 6.91×10^−6/(0.0359)^2

F= -495.65 × 10^-3/ 1.29 × 10^-3

F= -384.22N


Related Questions

Which volcanoes are formed by pyroclastic deposits? Select all that apply. A. cinder cone B. stratovolcano C. shield volcano
Please helpa car is driven 200 km west and then 80 km southwest. what is the displacement of the car from the point of orgin (magnitude and direction)? draw a diagram. ​
A flat (unbanked) curve on a highway that has a radius of 50 m. A car rounds the curve. The car has mass 4,907 kg. The static coefficient of friction between the curve and the car is 0.35. What is the maximum speed of the car to prevent sliding?
For exercise, an athlete lifts a barbell that weighs 400 N from the ground to a height of 2.0 m in a time of 1.6 s. Assume the efficiency of the human body is 25%, and that he lifts the barbell at a constant speed. Show all work and include proper unit for your final answer.a) In applying the energy equation (ΔK + ΔUg + ΔUs + ΔEch + ΔEth = W) to the system consisting of the earth, the barbell, and the athlete,1. Which terms (if any) are positive?2. Which terms (if any) are negative?3. Which terms (if any) are zero? b) Determine the energy output by the athlete in SI unit.c) Determine his metabolic power in SI unit.d) Another day he performs the same task in 1.2 s.1. Is the metabolic energy that he expends more, less, or the same?2. Is his metabolic power more, less, or the same?
If a single circular loop of wire carries a current of 61 A and produces a magnetic field at its center with a magnitude of 1.70 10-4 T, determine the radius of the loop.

How would a spinning disk's kinetic energy change if its moment of inertia was five times larger but its angular speed was five times smaller

Answers

A spinning disk's kinetic energy will change to one-tenth if its moment of inertia was five times larger but its angular speed was five times smaller.

Relation between Kinetic energy and Moment of Inertia:

  • Rotational kinetic energy is directly proportional to the rotational inertia and the square of the magnitude of the angular velocity.

Now, let's consider moment of inertia =  I  and angular speed = ω

It is asked that what would be change in Kinetic energy if

moment of inertia =   (five times larger)

angular speed = ω/5  (five times smaller)

The kinetic energy of a spinning body is given as:

K.E.=(1)/(2) I. w^2

On substituting the values, we will get:

K.E.= (1)/(2) (5I) ((w)/(5) )^2 \n\nK.E. =(1)/(10) I. w^2

Kinetic energy will be one-tenth to the kinetic energy before its spinning characteristics were changed.

Learn more:

brainly.com/question/12337396

A suspended platform of negligible mass is connected to the floor below by a long vertical spring of force constant 1200 N/m. A circus performer of mass 70 kg falls from rest onto the platform from a height of 5.8 m above it. Find the maximum spring compression

Answers

Answer:

The maximum spring compression = 3.21 m

Explanation:

The height of the circus performer above the platform connected to string material = 5.8 m

Let the maximum compression of the spring from the impact of the circus performer be x.

According to the law of conservation of energy, the difference in potential energy of the circus performer between the initial height and the level at which spring is compressed to is equal to the work done on the spring to compress it by x

Workdone on the spring by the circus performer = (1/2)kx²

where k = spring constant = 1200 N/m

Workdone on the spring by the circus performer = (1/2)(1200)x² = 600x²

The change in potential energy of the circus performer = mg (5.8 + x)

m = mass of the circus performer = 70 kg

g = acceleration due to gravity = 9.8 m/s²

The change in potential energy of the circus performer = (70)(9.8)(5.8 + x) = (3978.8 + 686x)

600x² = 3978.8 + 686x

600x² - 686x - 3978.8 = 0

Solving this quadratic equation

x = 3.21 m or - 2.07 m

Since the negative answer doesn't satisfy the laws of physics, our correct answer is 3.21 m

Hope this Helps!!!

A bag of cement of Weight 1000N hangs from ropes. Two of the ropes make angles of 1=60 and 2=30 with the horizontal.if the system is in equilibrium,find the tension T1,T2andT3 in the ropes

Answers

Answer:

T1 = 499.9N, T2 = 865.8N, T3 = 1000N

Explanation:

To find the tensions we need to find the vertical and horizontal components of T1 and T2

T1x = T1 cos60⁰, T1y = T1 sin60⁰

Also, T2x = T2 cos30⁰, T2y = T2 sin30⁰

For the forces to be in equilibrium,

the sum of vertical forces must be zero and the sum of horizontal forces must also be zero

Sum of Fx = 0

That is, T1x - T2x=0

NB: T2x is being subtracted because T1x and T2x are in opposite directions

T1 cos60⁰ - T2 cos30⁰ = 0

0.866T1 - 0.5T2 = 0 ............ (1)

Sum of Fy = 0

T1y + T2y - 1000 = 0

T1 sin60⁰ + T2 sin30⁰ - 1000 = 0

NB: The weight of the bag of cement is also being subtracted because it's in an opposite direction.

0.5T1 - 0.866T2 - 1000 = 0 ........(2)

From (1)

make T1 the subject

T1 = 0.5T2/0.866

Substitute T1 into (2)

0.5 (0.5T2/0.866) - 0.866T2 = 1000

(0.25/0.866)T2 - 0.866T2 = 1000

0.289T2 - 0.866T2 = 1000

1.155T2 = 1000

T2 = 865.8N

Then T1 = 0.5 x 865.8 / 0.866

T1 = 499.9N

T3 = 1000N

NB: The weight of the bag is the Tension above the rope, which is T3

7. An engineer is using a wire that has a resistance of 1.5 . This resistance is too high for the application he is designing. The wire must be exactly 2.5 cm long. What two things could he do to reduce the wire's resistance

Answers

Answer and Explanation:

We know that resistance R=(\rho l)/(A)  from the given equation of resistance it is clear that resistance depends on resistivity length  and area of the material but we can not change the length because it is given that the length must be 2.5 cm long.

So we can do two two things to reduce the resistance

  1. increase the cross sectional area
  2. decrease the resistivity of the material

A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and the density of helium is 0.179 kg/m3. (a) Draw a force diagram for the balloon. (Submit a file with a maximum size of 1 MB.) (b) Calculate the buoyant force acting on the balloon. (Give your answer to at least three significant figures.) 4159 N (c) Find the net force on the balloon. 1524 N Determine whether the balloon will rise or fall after it is released. The balloon will (d) What maximum additional mass can the balloon support in equilibrium? 155 kg (e) What happens to the balloon if the mass of the load is less than the value calculated in part (d)? The balloon and its load will remain stationary. The balloon and its load will accelerate downward. The balloon and its load will accelerate upward. (f) What limits the height to which the balloon can rise?

Answers

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=(B)/(g)-m=(4159 N)/(9.8 m/s^2)-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

Final answer:

The physics involved in the functioning of helium balloons is based on buoyancy and Archimedes' Principle. The forces at play include the force due to gravity, the buoyant force and the net force, which determines the motion of the balloon. The balloon's height limit is determined by the decrease in air density with altitude.

Explanation:

The several parts of this question are related to the principles of buoyancy and Archimedes' Principle. First, regarding the force diagram for the balloon (part a), it would show two primary forces. The force due to gravity (Fg) acting downwards and the buoyant force (Fb) acting upwards, which is a result of the displacement of air by the balloon. The net force mentioned in part (c) is calculated as the difference between these two forces.

Calculating the buoyant force (part b) involves multiplying the volume of the balloon by the density of the air and the acceleration due to gravity (Fb = V * ρ_air * g). For the net force on the balloon (part c), this is calculated by subtracting the weight of the balloon from the buoyant force (F_net = Fb - Fg). If the net force is positive, the balloon will rise, if it's negative, the balloon will fall, and if it is zero, the balloon will remain stationary.

The maximum additional mass the balloon can support in equilibrium (part d) is calculated using the net force divided by gravity. If the mass of the load is less than this value (part e), the balloon and its load will accelerate upward.

Lastly, the limit to the height to which the balloon can rise (part f) is determined by the decreasing density of the air as the balloon ascends. The buoyant force reduces as the balloon rises because the air density is lower at higher altitudes.

Learn more about Buoyancy here:

brainly.com/question/31237221

#SPJ3

Jolene travels north 5 miles and then goes west 3 miles before coming straight back south 2 miles. What is her distance

Answers

Answer:

mnbhngbfcvdxc

Explanation: