What type of fossils were found near Macon Georgia?

Answers

Answer 1
Answer:

Answer:

I believe whale fossils were found.

Answer 2
Answer: Whale fossils were found at macon georgia

Related Questions

The left ventricle of a resting adult's heart pumps blood at a flow rate of 85.0 cm3/s, increasing its pressure by 110 mm Hg, its velocity from zero to 25.0 cm/s, and its height by 5.00 cm. (All numbers are averaged over the entire heartbeat.) Calculate the total power output (in W) of the left ventricle. Note that most of the power is used to increase blood pressure.
A typical atomic polarizability is 1 × 10-40 (C·m)/(N/C). If the q in p = qs is equal to the proton charge e, what charge separation s could you produce in a typical atom by applying
A 200​-lb object is released from rest 600 ft above the ground and allowed to fall under the influence of gravity. Assuming that the force in pounds due to air resistance is minus10​v, where v is the velocity of the object in​ ft/sec, determine the equation of motion of the object. When will the object hit the​ ground? Assume that the acceleration due to gravity is 32 ft divided by sec squared and let​ x(t) represent the distance the object has fallen in t seconds.
Two narrow slits separated by 0.30 mm are illuminated with light of wavelength 496 nm. (a) How far are the first three bright fringes from the center of the pattern if observed on the screen 130 cm distant? (b) How far are the first three dark fringes from the center of the pattern?
The 2-Mg truck is traveling at 15 m/s when the brakes on all its wheels are applied, causing it to skid for 10 m before coming to rest. The total mass of the boat and trailer is 1 Mg. Determine the constant horizontal force developed in the coupling C, and the friction force developed between the tires of the truck and the road during this time.

Two 10-cm-diameter charged rings face each other, 25.0cm apart. Both rings are charged to +20.0nC. What is the electric field strength at:a) the midpoint between the two rings?b) the center of the left ring?

Answers

The electric field strength at the midpoint of the rings is 0 N/C.

The electric field strength at the center  of the left ring is 2710.84 N/C.

The given parameters:

  • Diameter of the rings, d = 10 cm
  • Distance between the rings, r = 25 cm
  • Charge of the rings, q = 20 nC

The electric field strength at the midpoint of the rings is calculated as follows;

E_(net) = E_1 + E_2\n\nE_(net) = E_1(+ve) - E_2(-ve) = 0

The electric field strength at the center  of the left ring is calculated as follows;

E = (kqL)/((R^2 + L^2)^(3/2)) \n\nE = (9* 10^9 * 20* 10^(-9) * 0.25 \ )/((0.05^2 + 0.25^2 )^(3/2)) \n\nE = 2710.84 \ N/C

Learn more about electric field here: brainly.com/question/14372859

Final answer:

The electric field strength at the midpoint between the two rings is zero, and at the center of the left ring, it is 2.88 * 10^4 N/C.

Explanation:

The electric field strength at the

  1. midpoint between the two rings is zero. The electric fields from each ring cancel each other out at this point because they are equal in magnitude and opposite in direction.
  2. At the center of the left ring, the electric field strength can be calculated using the formula for the electric field due to a charged ring. The formula is E = k * (Q / r²), where E is the electric field strength, k is the Coulomb's constant, Q is the charge, and r is the distance from the center of the ring. Plugging in the values, we get:

E = (8.99 * 10^9 Nm²/C²) * (20.0 * 10^-9 C) / (0.05 m)² = 2.88 * 10^4 N/C

We know we have exerted of force even when we have done no work this is called _____

Answers

Answer: The correct answer is zero work done.

Explanation:

Work is said to be done when the object moves through a distance when the force is applied to the object.

If the object does not move a distance even the force is exerted on the object then the work done is zero in this case.

Therefore, when the force is exerted even when no work is done then this is called zero work done.

Final answer:

Force is experienced even when no work is done, such as when pushing against a wall. This is due to the fact that work in physics requires force to be applied over a distance. When no movement occurs, no work is done, yet a force was still exerted.

Explanation:

The concept you're referring to is known as force, a fundamental aspect in Newton's laws of motion. According to Newton's third law, every action has an equal and opposite reaction. So, when you push against a wall, it pushes back with an equal amount of force, even though no movement occurs, and therefore no work is done. This is due to the role distance plays in the calculation of work. In the physics sense, work is done when a force is applied over a certain distance.

This is also tied to the concept of potential energy. For example, when a force causes an object to deform, such as compressing a spring, the work done is stored as potential energy in the object until it is released. Yet, if the object does not move or deform, no work has been done, but a force was still exerted.

Learn more about Force without Work here:

brainly.com/question/34174188

#SPJ3

Which sling can the crane use to lift the 1000kg pipe?A.
800kg rated sling
B. 1000kg rated sling
C. 2000kg rated sling
D. Band C

Answers

Answer:

C. 2000kg rated sling

Explanation:

ensures better safety and can carry twice more mass than current mass.

What is the density, in Mg/m3, of a substance with a density of 0.14 lb/in3? (3 pts) What is the velocity, in m/sec, of a vehicle traveling 70 mi/hr?

Answers

Answer:

276.74* 10^8Mg/m^3

31.29 m/sec

Explanation:

We have given density of substance 0.14lb/in^3

We have convert this into Mg/m^3

We know that 1 lb = 0.4535 kg. so 0.14 lb = 0.14×0.4535 = 0.06349 kg

We know that 1 kg = 1000 g ( 1000 gram )

So 0.06349 kg = 63.49 gram

And we know that 1 gram = 1000 milligram

So 63.49 gram =63.49* 10^3\ Mg

We know that 1 in^3=1.6387* 10^(-5)m^3

So 0.14in^3=0.14* 1.6387* 10^(-5)=0.2294* 10^(-5)m^3

So 0.14lb/in^3 =\frac{63.49\times 10^3}{0.2249\times 10^{-5}}=276.74\times 10^8lb/m^3[/tex]

In second part we have to convert 70 mi/hr to m/sec

We know that 1 mi = 1609.34 meter

So 70 mi = 70×1609.34 = 112653.8 meter

1 hour = 3600 sec

So 70 mi/hr =(70* 1609.34meter)/(3600sec)=31.29m/sec

Two narrow slits separated by 1.5 mm are illuminated by 514 nm light. Find the distance between adjacent bright fringes on a screen 5.0 m from the slits. Express your answer in meters using two significant figures.

Answers

The distance between the adjacent bright fringes is : 1.7 * 10⁻³ M

Given data :

separation between slits ( d ) = 1.5 x 10⁻³ m

wavelength of light ( λ ) =  514 * 10⁻⁹ m

Distance from narrow slit ( D ) = 5.0 m

Determine the distance between the adjacent bright fringes

we apply the formula below

w = D * λ  / d  ---- ( 1 )

where : w = distance between adjacent bright fringes

Back to equation ( 1 )

w =  ( 5 * 514 * 10⁻⁹ ) / 1.5 x 10⁻³

   = 1.7 * 10⁻³ M

Hence we can conclude that The distance between the adjacent bright fringes is : 1.7 * 10⁻³ M

Learn more about bright fringes calculations  : brainly.com/question/4449144

Answer:

1.7* 10^(-3) m

Explanation:

d = separation between the two narrow slits = 1.5 mm = 1.5 x 10⁻³ m

λ = wavelength of the light = 514 nm = 514 x 10⁻⁹ m

D = Distance of the screen from the narrow slits = 5.0 m

w = Distance between the adjacent bright fringes on the screen

Distance between the adjacent bright fringes on the screen is given as

w = (D\lambda )/(d)

w = ((5.0)(514* 10^(-9)) )/(1.5* 10^(-3))

w = 1.7* 10^(-3) m

Dave rows a boat across a river at 4.0 m/s. the river flows at 6.0 m/s and is 360 m across.a. in what direction, relative to the shore, does dave’s boat go?
b. how long does it take dave to cross the river?
c. how far downstream is dave’s landing point?
d. how long would it take dave to cross the river if there were no current?

Answers

a) Let's call x the direction parallel to the river and y the direction perpendicular to the river.

Dave's velocity of 4.0 m/s corresponds to the velocity along y (across the river), while 6.0 m/s corresponds to the velocity of the boat along x. Therefore, the drection of Dave's boat is given by:

\theta= arctan((v_y)/(v_x))=arctan((4.0 m/s)/(6.0 m/s))=arctan(0.67)=33.7^(\circ)

relative to the direction of the river.


b) The distance Dave has to travel it S=360 m, along the y direction. Since the velocity along y is constant (4.0 m/s), this is a uniform motion, so the time taken to cross the river is given by

t=(S_y)/(v_y)=(360 m)/(4.0 m/s)=90 s


c) The boat takes 90 s in total to cross the river. The displacement along the y-direction, during this time, is 360 m. The displacement along the x-direction is

S_x = v_x t =(6.0 m/s)(90 s)=540 m

so, Dave's landing point is 540 m downstream.


d) If there were no current, Dave would still take 90 seconds to cross the river, because its velocity on the y-axis (4.0 m/s) does not change, so the problem would be solved exactly as done at point b).