Molecular compounds result from covalent bonding which are called _______.This is for high school physical science

Answers

Answer 1
Answer:

Answer:

Diatomic Molecule

Explanation:


Related Questions

To measure the solubility product of lead (II) iodide (PbI2) at 25°C, you constructed a galvanic cell that is similar to what you used in the lab. The cell contains a 0.5 M solution of a lead (II) nitrate in one compartment that connects by a salt bridge to a 1.0 M solution of potassium iodide saturated with PbI2 in the other compartment. Then you inserted two lead electrodes into each half-cell compartment and closed the circuit with wires. What is the expected voltage generated by this concentration cell? Ksp for PbI2 is 1.4 x 10-8. Show all calculations for a credit.
A patient has been diagnosed with mitochondrial disease and is experiencing the following symptoms: fatigue (lack of energy)and muscle weakness. Which organelles (cell parts) would NOT likely be immediately responsible for these symptoms? select all that apply. Mitochondria,Chloroplast, Lysosome,and Cytoplasm.NEED HELP ASAP
Ionic equation for Sr3(PO4)2 and its solubility product (Ksp)?​
2 SO2 (g) + O2 (g) 2 SO3 (g)If the TEMPERATURE on the equilibrium system is suddenly increased :The value of Kc A. IncreasesB. DecreasesC. Remains the sameThe value of Qc A. Is greater than KcB. Is equal to KcC. Is less than KcThe reaction must: A. Run in the forward direction to restablish equilibrium.B. Run in the reverse direction to restablish equilibrium.C. Remain the same. Already at equilibrium.The concentration of O2 will: A. Increase.B. Decrease.C. Remain the same.
When a solid compound is formed from chemicals that are in solution, it is called aprecipitatecondensatecrystal

How many grams of CO2 and H2O are produced from the combustion of 220. g of propane (C3H8)? C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(g)

Answers

Answer:

(C3H8) produces 660 g of CO2 and 360 g of H2O

Explanation:

The balanced chemical equation for the combustion of propane (C3H8) is:

C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(g)

This equation tells us that for every molecule of propane (C3H8) that reacts with 5 molecules of oxygen (O2), 3 molecules of carbon dioxide (CO2) and 4 molecules of water (H2O) are produced.

So, if we have 220. g of propane (C3H8), we can find the amount of CO2 and H2O produced by using the mole ratio from the balanced equation:

1 mole C3H8 reacts with 5 moles of O2 to produce 3 moles of CO2 and 4 moles of H2O

We can find the number of moles of C3H8 by dividing the mass by the molar mass of C3H8 (44 g/mol):

220 g / 44 g/mol = 5 moles C3H8

So, the number of moles of CO2 and H2O produced can be found by multiplying the number of moles of C3H8 by the mole ratio:

3 moles CO2 = 3 moles CO2/1 mole C3H8 * 5 moles C3H8 = 15 moles CO2

4 moles H2O = 4 moles H2O/1 mole C3H8 * 5 moles C3H8 = 20 moles H2O

Finally, we can convert the number of moles of CO2 and H2O to grams by multiplying by their molar masses (44 g/mol for CO2 and 18 g/mol for H2O):

15 moles CO2 * 44 g/mol = 660 g CO2

20 moles H2O * 18 g/mol = 360 g H2O

So, the combustion of 220 g of propane (C3H8) produces 660 g of CO2 and 360 g of H2O.

A buffer solution contains 0.11 mol of acetic acid and 0.13 mol of sodium acetate in 1.00 L. What is the pH of this buffer?What is the pH of the buffer after the addition of 2?

Answers

Answer:

Henderson Hasselbalch equation: pH = pKa + log [salt]/[acid]

You need to know the pKa for acetic acid. Looking it up one finds it to be 4.76

(a). pH = 4.76 + log [0.13]/[0.10]

= 4.76 + 0.11

= 4.87

(b) KOH + CH3COOH =>H2O + CH3COOK so (acid)goes down and (salt)goes up. Assuming no change in volume, you have 0.10 mol acid - 0.02 mol = 0.08 mol acid and 0.13 mol salt + 0.02 mol = 0.15 mol salt

pH = 4.76 + log [0.15]/[0.08]

= 4.76 + 0.27

= 5.03

Final answer:

The pH of the buffer with 0.11 mol acetic acid and 0.13 mol sodium acetate in 1.00 L is 4.91, calculated using the Henderson-Hasselbalch equation. The second part of the question regarding the pH change after the addition of '2' is unanswerable without further information on what is being added.

Explanation:

To answer the question of what the pH of the buffer solution containing 0.11 mol of acetic acid and 0.13 mol of sodium acetate in 1.00 L is, we can apply the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

Where [A-] is the concentration of the acetate ion and [HA] is the concentration of acetic acid. For acetic acid, the pKa is approximately 4.76. Since we have 0.11 mol of acetic acid and 0.13 mol of sodium acetate in 1.00 L solution, the concentrations are 0.11 M and 0.13 M respectively.

Substituting these values into the Henderson-Hasselbalch equation gives:

pH = 4.76 + log(0.13/0.11)

Calculating the log(0.13/0.11) yields approximately 0.15. Therefore:

pH = 4.76 + 0.15 = 4.91

The question "What is the pH of the buffer after the addition of 2?" seems to be incomplete, as it does not specify what '2' refers to. If '2' refers to adding 2 moles of a strong acid or base, for instance, the pH would change significantly and the buffer capacity might be exceeded. The exact effect on pH would depend on the nature of the substance added (acid or base) and its quantity. Without specifics, this part of the question cannot be accurately answered.

The concept of buffer capacity is relevant to discuss here. Buffer capacity refers to the amount of acid or base a buffer can absorb without a significant change in pH. Buffer solutions with higher molar concentrations of both the acid and the corresponding salt will have greater buffer capacity.

Learn more about Buffer Solution pH here:

brainly.com/question/30467257

#SPJ12

How many moles are in 12.0 grams of O2

Answers

Answer:

Moles = 0.375

Explanation:

Moles= m/M

= 12/32 = 0.375mol

Adding charts and graphs helps a scientistO To state the problem
O To determine trends
O To simplify results
O Both B and C
O All of the above

Answers

Answer:

b and c

Explanation:

the problem was solved through the experiment and tested

Adding charts and graphs helps a scientist to determine trends and to simplify results

In their elemental forms, the halogens are Select one: a. strong oxidizing agents. b. strong reducing agents. c. strong acids. d. strong bases. e. amphoteric.

Answers

Answer:

A

Explanation:

Halogens have 7 electrons in their valence shell and requires just one electron to achieve their stable structure. Because of this they have high electron affinity and hence high electronegativity and they are strong oxidizing agents. Oxidation is the loss of electrons . Halogens have a high readiness to take electrons which a metal loses thereby oxidizing it. The other options are wrong as they involve compounds and not the elemental form as stated in the question.

The steps in a reaction mechanism are as follows. Which species is acting as a catalyst? Step 1: Ag+(aq) + Ce4+(aq) <-----> Ag2+(aq) + Ce3+(aq) Step 2: Tl+(aq) + Ag2+(aq) -----> Tl2+(aq) + Ag+(aq) Step 3: Tl2+(aq) + Ce4+(aq) -----> Tl3+(aq) + Ce3+(aq)

Answers

The specie which is acting as a catalyst is; Ag+(aq).

Discussion:

The catalyst is a specie that exists in the same form at the beginning and end of the reaction.

The reaction's mechanism is as follows;

  • Step 1: Ag+(aq) + Ce⁴+(aq) <-----> Ag²+(aq) + Ce³+(aq)

  • Step 2: Tl+(aq) + Ag²+(aq) -----> Tl²+(aq) + Ag+(aq)

  • Step 3: Tl²+(aq) + Ce⁴+(aq) -----> Tl³+(aq) + Ce³+(aq)

Evidently, although Ag+(aq) was converted to Ag²+(aq) in Step 1 of the reaction; the Ag²+(aq) is reverted back to Ag+(aq) in Step 2 of the reaction.

Read more:

brainly.com/question/22498090

Answer:

Ag⁺ acts as the catalyst.

Explanation:

Hello,

In this case, each step is reorganized:

- Step 1:

Ag^+(aq) + Ce^(4+)(aq) \rightleftharpoons Ag^(2+)(aq) + Ce^(3+)(aq)

- Step 2:

Tl^+(aq) + Ag^(2+)(aq) \rightarrow  Tl^(2+)(aq) + Ag^+(aq)

- Step 3:

Tl^(2+)(aq) + Ce^(4+)(aq) \longrightarrow Tl^(3+)(aq) + Ce^(3+)(aq)

In such a way, Ag⁺ is converted to Ag²⁺ in the first step, but then it is regenerated to simple Ag⁺, therefore, Ag⁺ acts as the catalyst.

Best regards.