To measure the solubility product of lead (II) iodide (PbI2) at 25°C, you constructed a galvanic cell that is similar to what you used in the lab. The cell contains a 0.5 M solution of a lead (II) nitrate in one compartment that connects by a salt bridge to a 1.0 M solution of potassium iodide saturated with PbI2 in the other compartment. Then you inserted two lead electrodes into each half-cell compartment and closed the circuit with wires. What is the expected voltage generated by this concentration cell? Ksp for PbI2 is 1.4 x 10-8. Show all calculations for a credit.

Answers

Answer 1
Answer:

Answer:

0.2320V

Explanation:

Voltage can be defined as the amount of potential energy available (work to be done) per unit charge, to move charges through a conductor.

Voltage can be generated by means other than rubbing certain types of materials against each other.

Please look at attached file for solution to the problem.

Answer 2
Answer:

Final answer:

The expected voltage generated by this concentration cell is approximately 0.113 V.

Explanation:

To calculate the voltage generated by the concentration cell, we can use the Nernst equation. The Nernst equation relates the concentration of the ions in the two compartments to the voltage of the cell. The equation is:

E = E° - (RT/nF) ln(Q)

Where:

  • E is the voltage of the cell
  • E° is the standard cell potential
  • R is the gas constant (8.314 J/mol·K)
  • T is the temperature in Kelvin (25 + 273 = 298 K)
  • n is the number of moles of electrons transferred (2 in this case)
  • F is Faraday's constant (96,485 C/mol)
  • ln(Q) is the natural logarithm of the reaction quotient

The reaction quotient (Q) can be calculated using the concentrations of the lead (II) and iodide ions in each compartment.

Since this is a concentration cell, the standard cell potential (E°) for this system is 0 V. Therefore, the equation simplifies to:

E = - (RT/nF) ln(Q)

Now we can calculate the voltage:

  1. Calculate Q:

The solubility product constant (Ksp) for PbI2 is 1.4 x 10-8. Because PbI2 is in a saturated solution, the concentration of Pb2+ ions and I- ions are both equal to the solubility of PbI2. We can substitute these values into the equation to calculate Q:

Q = [Pb²+] x [I-]

Q = (1.4 x 10-8) x (1.4 x 10-8) = 1.96 x 10-16

  1. Calculate E:

Now we can calculate the voltage using the given values:

For the Nernst equation, we need to convert the temperature to Kelvin:

T = 25°C + 273 = 298 K

Substitute the values into the equation:

E = - (8.314 J/mol·K x 298 K / 2 x 96,485 C/mol) ln(1.96 x 10-16)

E ≈ 0.113 V

Therefore, the expected voltage generated by this concentration cell is approximately 0.113 V.

Learn more about Voltage generated by a concentration cell here:

brainly.com/question/30226316

#SPJ11


Related Questions

What is the difference between a volume that is delivered and a volume that is contained?
Question 4What is the sum of these two reactions? Write your answer below, but don't worry about formatting with subscripts-Do write chemical formulas withproper atomic symbols, though (e.g., write CuCl2, not CUCL2).(1) Ca + 2HCl - CaCl2 + H2(2) CaCl2+H2O = CaO + 2HCl
Find the density of an object that has a volume of 2.3 x 10^2 and a mass of3.5 x 10^3. *
Which element is a halogen?chlorine (Cl)oxygen (O)carbon (C)radon (Rn)
In the important industrial process for producing ammonia (the Haber Process), the overall reaction is: N2(g) + 3H2(g) → 2NH3(g) + 24,000 calories A yield of ammonia, NH3, of approximately 98% can be obtained at 200°C and 1,000 atmospheres of pressure. How many grams of N2 must react to form 1.7 grams of ammonia?

Please help I need help fast

Answers

B.
Pretty much common sense.

Can anyone tell me about sulfuric acid in shampoo/soap?

Answers

The term sulfate is used in chemistry to denote a salt of sulfuric acid. ... This is the sulfate type which can be found in many cleaning and hygiene products including shampoos. The main reasons why it is added to shampoos are because this sulfate produces foam and is a powerful detergent.

Which expression correctly describes energy using SI units? A. 1 J=1kg•m^2/s^2 B. 1 J= 1kg•m/s^2 C. 1 J= 1kg• m/s D. 1 J= 1kg•m^2/s

Answers

Answer:

A. 1 J=1kg•m^2/s^2

Explanation:

Energy refers to the capacity to do work. According to the International System of units (SI units), energy is measured in Joules.

Energy is represented by the force applied over a distance. Force is measured in Newton (N) and distance in metres (m). Hence, energy is Newton × metre (N.m)

Newton is derived from the SI units of mass (Kilograms), and acceleration (metres per seconds^2) i.e Kg.m/s^2, since Force = mass × acceleration.

Since; Energy = Newton × metres

If Newton = Kg.m/s^2 and metres = m

Energy (J) will therefore be; Kg.m/s^2 × m

1J = Kg.m^2/s^2

Which of the following shows the combustion of a hydrocarbon?A. 2C2H2 +502 + 4CO2 + 2H20
O B. CO2 + H2O → H2CO3
O C. NaOH + HCl → NaCl + H20
O D. C2H4 + Cl2 → C2H4Cl2

Answers

The chemical equation 2 C₂H₂ +5 O₂ + 4 CO₂ + 2 H₂O is the equation which represents the combustion of a hydrocarbon.

What is a chemical equation?

Chemical equation is a symbolic representation of a chemical reaction which is written in the form of symbols and chemical formulas.The reactants are present on the left hand side while the products are present on the right hand side.

A plus sign is present between reactants and products if they are more than one in any case and an arrow is present pointing towards the product side which indicates the direction of the reaction .There are coefficients present next to the chemical symbols and formulas .

The first chemical equation was put forth by Jean Beguin in 1615.By making use of chemical equations the direction of reaction ,state of reactants and products can be stated. In the chemical equations even the temperature to be maintained and catalyst can be mentioned.

Learn more about chemical equation,here:

brainly.com/question/28294176

#SPJ5

Answer:

a

Explanation:

One gram of a compound requires the following quantities of solvent to dissolve: 47 mL of water, 8.1 mL of chloroform, 370 mL of diethyl ether, or 86 mL of benzene. Calculate the solubility of the compound in these four solvents (as g/100 mL). Estimate the partition coefficient of the compound between chloroform and water, ethyl ether and water, and benzene and water. Which solvent would you choose to extract the compound from an aqueous solution

Answers

Answer:

Chloroform.

Explanation:

Given,

Solvent requires 1g of compound per 100 mL

For water,

= 1g/47ml

= 2.1

For Chloroform,

= 1 g/8.1 mL

= 12.345679

For Diethyl ether,

= 1 g/370 mL

= 0.27

For Benzene,

=  1 g/86 mL

= 1.2

Partition coefficients:

Water = -

chloroform = 5.9

Diethyl = .13

Benzene  = .57

The solvent chloroform would be chosen for drawing out the compound out of an aqueous solution as it has the maximum solubility.

Final answer:

The solubility of a compound in different solvents will determine its concentration in each solvent. The partition coefficient represents the relative solubility of a compound in two immiscible solvents. Chloroform would be the best choice to extract the compound from an aqueous solution.

Explanation:

The solubility of a compound is usually expressed as grams of solute per 100 mL of solvent. To calculate the solubility, you can use the following formula:

Solubility (g/100 mL) = (mass of solute / volume of solvent) * 100

Using this formula, the solubility of the compound in water is 47 g/100 mL, in chloroform is 97.53 g/100 mL, in diethyl ether is 2.70 g/100 mL, and in benzene is 1.16 g/100 mL.

The partition coefficient is a measure of the compound's solubility in two immiscible solvents. To calculate it, divide the solubility of the compound in one solvent by its solubility in another solvent. For example, the partition coefficient between chloroform and water would be:

Partition coefficient = Solubility in chloroform / Solubility in water = 97.53 g/100 mL / 47 g/100 mL = 2.07

The larger the partition coefficient, the more soluble the compound is in the first solvent compared to the second solvent. Based on the partition coefficients, chloroform would be the best choice to extract the compound from an aqueous solution.

Learn more about Solubility and partition coefficient here:

brainly.com/question/31607446

#SPJ3

How many chlorine atoms are there in 2 molecules of ICl?

Answers

Answer: 38 chlorine atoms are in 3 molecules of HCI

Explanation:

Final answer:

In 2 molecules of ICl, there would be 2 atoms of Chlorine, as the subscript of Chlorine in the compound ICl is 1.

Explanation:

In a compound, the subscript of an element indicates the number of atoms of that element present per molecule of the compound. For the ICl compound, there is one atom of Chlorine in one molecule. Therefore, in 2 molecules of ICl, there would be 2*1 = 2 atoms of Chlorine.

Learn more about Atoms in a Molecule here:

brainly.com/question/15172278

#SPJ3

Other Questions