A child attaches a 0.6 kg toy to a 0.9 meter length of string and spins it around in uniform circular motion. Calculate the tension in the string if the period of rotation is 4.1 seconds.

Answers

Answer 1
Answer:

Answer:

1.26812 N

Explanation:

m = Mass of toy = 0.6\ \text{kg}

r = Length of string = 0.9\ \text{m}

t = Period of rotation = 4.1\ \text{s}

Time period is given by

t=(2\pi r)/(v)\n\Rightarrow v=(2\pi r)/(t)\n\Rightarrow v=(2\pi 0.9)/(4.1)\n\Rightarrow v=1.3792\ \text{m/s}

The rotational velocity is 1.3792 m/s

The tension in the rope will be the centripetal force acting on the toy

T=(mv^2)/(r)\n\Rightarrow T=(0.6* 1.3792^2)/(0.9)\n\Rightarrow T=1.26812\ \text{N}

The tension in the string is 1.26812 N.


Related Questions

A 2.07-kg fish is attached to the lower end of an unstretched vertical spring and released. The fish drops 0.131 m before momentarily coming to rest. (a) What is the spring constant of the spring? (b) What is the period of the oscillations of the fish? ?
Which of the following is a good example of a contact force?ОА.Earth revolving around the SunOB.a bridge suspended by cablesOC.a ball falling downward a few seconds after being thrown upwardOD. electrically charged hairs on your head repelling each other and standing up
Find a glass jar with a screw-top metal lid. Close the lid snugly and put the jar into the refrigerator. Leave it there for about 10 minutes and then take the jar out and try to open the lid. (a) Did the lid become tighter or looser? Explain your observation.
Two particles, one with charge -6.29 × 10^-6 C and one with charge 5.23 × 10^-6 C, are 0.0359 meters apart. What is the magnitude of the force that one particle exerts on the other?
A 0.157kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.850m/s . It has a head-on collision with a 0.306kg glider that is moving to the left with a speed of 2.26m/s . Suppose the collision is elastic.Find the magnitude of the final velocity of the 0.157kg glider.Find the magnitude of the final velocity of the 0.306kg glider.

Look at the Kunoichi's of Naruto but as a Gang. Who do you think looks the baddest out of the group(but in a good way)?

My opinion is Hinata...just saying

Answers

Answer:

hinata for sure

Explanation:

seems reasonable

A uniform, 4.5 kg, square, solid wooden gate 2.0 m on each side hangs vertically from a frictionless pivot at the center of its upper edge. A 1.2 kg raven flying horizontally at 4.5 m/s flies into this door at its center and bounces back at 1.5 m/s in the opposite direction. What is the angular speed of the gate just after it is struck by the unfortunate raven?

Answers

Answer:

Explanation:

Mass of the gate, m_1 = 4.5 kg

Mass of the raven, m_2 = 1.2 kg

Initial speed of raven, v_1 = 4.5 m/s

Final speed of raven, v_2 = - 1.5 m/s

Moment of Inertia of the gate about the axis passing through one end:

I = (1)/(3) m_1 a^2\nI = (1)/(3) *4.5 * 2^2\nI = 6 kg m^2

Angular momentum of the gate, L = I \omega

L = 5.33 \omega

Using the law of conservation of angular momentum:

m_2 v_f (a/2) + I\omega = m_2v_i (a/2)\nI\omega = m_2 (a/2)(v_i - v_f)\n

what is the necessary condition on a force the result the conservation of angular momentum for a particle affected by that force?

Answers

Answer:

The force must be applied on the axis of rotation

Explanation:

A rotating system conserves its angular momentum only if there are no external torques on the system. In other words, the external torque must be equal to zero.

T=0

T=Fxd  

Torque is equal to the vector product of a force by the distance between the axis of rotation and where the force is applied.

For this product to be zero, the force must be applied on the axis of rotation (d=0).

An element emits light at two nearly equal wavelengths, 577 nm and 579 nm If the light is normally incident on a diffraction grating with 2000 lines/cm., what is the distance between the 3rd order fringes of the two wavelengths on a screen 1 m from the grating?

Answers

Answer:

Explanation:

d = width of slit = 1 / 2000 cm =5 x 10⁻⁶ m

Distance of screen D = 1 m.

wave length λ₁ and λ₂ are 577 x 10⁻⁹ and 579 x 10⁻⁹ m.respectively.

distance of third order bright fringe = 3.5 λ D/d

for 577 nm , this distance = 3.5 x 577 x 10⁻⁹ x 1 /5 x 10⁻⁶

= .403 m = 40.3 cm

For 579 nm , this distance = 3.5 x 579 x 1 / 5 x 10⁻⁶

= 40.5 cm

Distance between these two = 0.2 cm.

Your friend is trying to construct a clock for a craft show and asks you for some advice. She has decided to construct the clock with a pendulum. The pendulum will be a very thin, very light wooden bar with a thin, but heavy, brass ring fastened to one end. The length of the rod is 80 cm and the diameter of the ring is 10 cm. She is planning to drill a hole in the bar to place the axis of rotation 15 cm from one end. She wants you to tell her the period of this pendulum.

Answers

Answer:

The period of the pendulum is  T  =  1.68 \  sec

Explanation:

The diagram illustrating this setup is shown on the first uploaded image

From the question we are told that

     The length of the rod is L =  80 \ cm

       The diameter of the ring is d = 10 \ cm

       The distance of the hole from the one end  D =  15cm

From the diagram we see that point A is the center of the brass ring

 So the length from the axis of  rotation is mathematically evaluated as

          AP = 80 + 10 -5 -15  

          AP =  70 \ cm =  (70)/(100)  =  0.7 \ m

Now the period of the pendulum is mathematically represented as

             T  = 2 \pi  \sqrt{(AP)/(g) }

             T  =  2 \pi \sqrt{(0.7)/(9.8 ) }

             T  =  1.68 \  sec

     

     

     

At one instant, a 17.0-kg sled is moving over a horizontal surface of snow at 4.10 m/s. After 6.15 s has elapsed, the sled stops. Use a momentum approach to find the magnitude of the average friction force acting on the sled while it was moving.

Answers

Answer:

force = 11.33 kg-m/s^(2)

Explanation:

given data:

sled mass = 17.0 kg

inital velocity (U) = 4.10 m/s

elapsed time (T) 6.15 s

final velocity (V) = 0

final momentum P2 = 0

Initial momentum of sledge is

P_(1)=mU

P_(1)= 17.0 * 4.10 = 69.7 kg- m/s

from newton second law of motion

F=(\Delta P)/(\Delta t)

F = (P_(1)-P_(2))/(T)

Kgm/s^2

F = (69.7-0)/(6.15)= 11.33[tex]kg-m/s^(2)[/tex]