a mass of .4 kg is raised by a vertical distance of .450 m in the earth's gravitational field. what is the change in its gravitational potential energy

Answers

Answer 1
Answer:

Answer:

E = 1.76 J

Explanation:

Given that,

Mass of an object, m = 0.4 kg

It moves by a vertical distance of 0.45 m in the Earth's gravitational field.

We need to find the change in its gravitational potential energy. It can be given by the formula as follow :

E=mgh\n\nE=0.4* 9.8* 0.45\n\nE=1.76\ J

So, the change in its gravitational potential energy is 1.76 J.


Related Questions

If the intensity of a loud car horn is 0.005 W/m^2 when you are 2 meters away from the source. Calculate the sound intensity level. A. 1.6 WB. 0.06 WC. 97 dBD. 223 dBE. 179 dB
Explain why Planck’s introduction of quantization accounted for the properties of black-body radiation.
It's nighttime, and you've dropped your goggles into a 3.2-m-deep swimming pool. If you hold a laser pointer 0.90m above the edge of the pool, you can illuminate the goggles if the laser beam enters the water 2.2m from the edge.-How far are the goggles from the edge of the pool?
2. Turn on Show current and select Electron flow. The moving dots represent a current of electrons—tiny, negatively charged particles—moving through the wire. Voltage is a measure of how much more potential energy an electron at one end of a battery has than an electron at the other end of the battery. A. How does changing the battery’s voltage affect the current? It makes the current get more electrons which causes more movement
The record for the world’s loudest burp is 109.9 dB, measured at a distance of 2.5 m from the burper. Assuming that this sound was emitted as a spherical wave, what was the power emitted by the burper during his record burp?

Tonya picks up a leaf from the ground and holds it at arm’s length. She lets go, and the leaf falls to the ground. What force pulled the leaf to the ground?

Answers

Answer:

Gravity

Explanation:

Gravity is constantly pulling objects downward. Without it, everything would float out into space.

I hope this answer helps :)

Answer:

The answer for the given question above would be option C. GRAVITATIONAL FORCE. Based on the given scenario above of a leaf that falls to the ground when Tonya let it go, the force that pulled the leaf to the ground is the gravitational force. This kind of force is a force that attracts any object with mass.

Hope this helps!!!

Find the net downward force on the tank's flat bottom, of area 1.60 m2 , exerted by the water and air inside the tank and the air outside the tank. Assume that the density of water is 1.00 g/cm3

Answers

Answer:

The net downward force on the tank is 1.85*10^(5)\ N

Explanation:

Given that,

Area = 1.60 m²

Suppose the design of a cylindrical, pressurized water tank for a future colony on Mars, where the acceleration due to gravity is 3.71 meters per second per second. The pressure at the surface of the water will be 150 K Pa , and the depth of the water will be 14.4 m . The pressure of the air in the building outside the tank will be 88.0 K Pa.

We need to calculate the net downward force on the tank

Using formula of formula

F=(P+\rho* g* h-P_(out))A

Where, P = pressure

g = gravity at mars

h = height

A = area

Put the value into the formula

F=(150*10^3+1.00*10^3*3.71*14.4-88.0*10^(3))*1.60

F=1.85*10^(5)\ N

Hence, The net downward force on the tank is 1.85*10^(5)\ N

Final answer:

The net downward force on the tank's flat bottom can be found by calculating the pressure at the bottom of the container.

Explanation:

Since the density is constant, the weight can be calculated using the density:

w = mg = pVg = pAhg.

The pressure at the bottom of the container is therefore equal to atmospheric pressure added to the weight of the fluid divided by the area.

Learn more about pressure calculation here:

brainly.com/question/35558942

#SPJ3

A sound wave travels with a velocity of 330 m/s and has a frequency of 500 Hz. What is itswavelength?

Answers

Answer:

Wavelength = 0.66 meters

Explanation:

Given the following data;

Speed = 330 m/s

Frequency = 500 Hz

To find the wavelength;

Mathematically, wavelength is calculated using this formula;

Wavelength = \frac {speed}{frequency}

Substituting into the equation, we have;

Wavelength = \frac {330}{500}

Wavelength = 0.66 meters

The heating element of a coffeemaker operates at 120 V and carries a current of 4.50 A. Assuming the water absorbs all of the energy converted by the resistor, calculate how long it takes to heat 0.525 kg of water from room temperature (23.0°C) to the boiling point.

Answers

Answer:

It will take 313.376 sec to raise temperature to boiling point

Explanation:

We have given that potential difference V = 120 Volt

Current i = 4.50 A

So resistance R=(V)/(i)=(120)/(4.50)=26.666ohm

Heat flow in resistor will be equal to Q=i^2Rt

It is given that this heat is used for boiling the water

Mass of the water = 0.525 kg = 525 gram

Specific heat of water 4.186 J/gram/°C

Initial temperature is given as 23°C

Boiling temperature of water = 100°C

So change in temperature = 100-23 = 77°C

Heat required to raise the temperature of water Q=mc\Lambda T

So 4.50^2* 26.666* t=525* 4.186* 77

t = 313.376 sec

So it will take 313.376 sec to raise temperature to boiling point

Answer:

Explanation:

Voltage, V = 120 V

Current, i = 4.5 A

mass of water, m = 0.525 kg

initial temperature of water, T1 = 23°C

Final temperature of water, T2 = 100 °C

specific heat of water, c = 4.18 x 1000 J/kg °c

let the time taken is t.

Heat given by the heater = heat gain by the water

V x i x t = m x c x (T2 - T1)

120 x 4.5 x t = 0.525 x 4.18 x 1000 x (100 - 23)

540 t = 47701.5

t = 88.34 s

What is the frequency of a photon that has the same momentum as a neutron moving with a speed of 1.90 × 103 m/s?

Answers

The mass of a neutron is:
m=1.67 \cdot 10^(-27)kg
Since we know its speed, we can calculate the neutron's momentum:
p=mv=(1.67 \cdot 10^(-27)kg)(1.90 \cdot 10^3 m/s)=3.17 \cdot 10^(-24) kg m/s

The problem says the photon has the same momentum of the neutron, p.  The photon momentum is given by
p= (h)/(\lambda)
where h is the Planck constant, and \lambda is the photon wavelength. If we re-arrange the equation and we use the momentum we found before, we can calculate the photon's wavelength:
\lambda= (h)/(p)= (6.6 \cdot 10^(-34)Js)/(3.17 \cdot 10^(-24) kg m/s)=2.08 \cdot 10^(-10) m

And since we know the photon travels at speed of light c, we can now calculate the photon frequency:
f= (c)/(\lambda)= (3 \cdot 10^8 m/s)/(2.08 \cdot 10^(-10) m)=  1.44 \cdot 10^(18) Hz

Which of the following best represents stored potential energy?Air leaking from a flat tire
Stress built up in a rock fault
Heat given off by a forest fire
Water flowing through a hose

Answers

Answer:

B

Explanation:

stress built up on a rock fault