The graph below shows the velocity of a car as it attempts to set a speedrecord.
Velocity vs. Time
1400
1300
1200
1100
1000
4 45
3
1 (s)
At what point is the car the fastest?
A. t = 1.0 s
B. t = 4.2 s
C. t = 3.0 s
D. t = 4.5 s
The graph below shows the velocity of a car as - 1

Answers

Answer 1
Answer:

From the graph, it is clear that, the velocity is at a time of 1 s is highest. The velocity at 1 second corresponds to 1250 km/hr. Then it decreases with time.

What is velocity - time graph ?

The velocity - time graph shows the change in velocity with respect to time. The velocity is placed in y -axis and time is given in x - axis. The slope of the curve in velocity - time graph gives the acceleration of the object.

Similarly, the position of the object in meter after a t seconds can be determined from the velocity - time graph. It is the rate of change in velocity of the object.

From the graph, it is clear that, the curve has its peak at 1 second. After that the peak descends down. Hence, the maximum velocity of the car is at a time of 1 second at which the velocity is 1250 km/hr.

Find more on velocity - time graph :

brainly.com/question/28357012

#SPJ7

Answer 2
Answer: Guessing (A) because it had the highest velocity number on the graph and it matched 1s

Related Questions

24-gauge copper wire has a diameter of 0.51 mm. The speaker is located exactly 4.27 m away from the amplifier. What is the minimum resistance of the connecting speaker wire at 20°C? Hint: How many wires are required to connect a speaker!Compare the resistance of the wire to the resistance of the speaker (Rsp = 8 capital omega)
You observe three carts moving to the right. Cart A moves to the right at nearly constant speed. Cart B moves to the right, gradually speeding up. Cart C moves to the right, gradually slowing down. Which cart or carts, if any, experience a net force to the right
A popular physics lab involves a hand generator and an assortment of wires with different values of resistance. In the lab, the leads of the generator are connected across each wire in turn. For each wire, students attempt to turn the generator handle at the same constant rate. Students must push harder on the handle when the leads of the generator are connected__________. This is because turning the handle at a given constant rate produces__________ , regardless of what is connected to the leads. So, when turning the handle at a constant rate, lab students must push harder in cases where there is________
5. A 55-kg swimmer is standing on a stationary 210-kg floating raft. The swimmer then runs off the raft horizontally with the velocity of +4.6 m/s relative to the shore. Find the recoil velocity that the raft would have if there were no friction and resistance due to the water.
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 162 cm , but its circumference is decreasing at a constant rate of 14.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 0.500 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf EMF induced in the loop after exactly time 8.00s has passed since the circumference of the loop started to decrease.

If i throw up an object up at 31 m/s, how long will it take to get to its highest point

Answers

Answer:

Explanation:

vf=vi+at

vf=31 m/s

vi=0 m/s

a=g=9.8 m/s2

t=?

vf-vi=at

vf-vi/a=t

t=vf-vi/a

t=31 m/s-0/9.8

t=3.16 s

The mass of a string is 20 g and it has a length of 3.2 m. Assuming that the tension in the string is 2.5 N, what will be the wavelength of a travelling wave that is created by a sinusoidal excitation of this string with a frequency of 20 Hz. Provide the wavelength in units of m. Please note: You do not include the units in your answer. Just write in the number.

Answers

Answer:

The wavelength of the wave is 1 m

Explanation:

Given;

mass of the string, m = 20 g = 0.02 kg

length of the string, L = 3.2 m

tension on the string, T = 2.5 N

the frequency of the wave, f = 20 Hz

The velocity of the wave is given by;

v = \sqrt(T)/(\mu) {}

where;

μ is mass per unit length = 0.02 kg / 3.2 m

μ = 6.25 x 10⁻³ kg/m

v = \sqrt{(T)/(\mu) } \n\nv = \sqrt{(2.5)/(6.25*10^(-3)) } \n\nv = 20 \ m/s

The wavelength of the wave is given by;

λ = v / f

λ = (20 m/s )/ (20 Hz)

λ = 1 m

Therefore, the wavelength of the wave is 1 m

A rocket sled accelerates at a rate of 49.0 m/s2 . Its passenger has a mass of 75.0 kg. (a) Calculate the horizontal component of the force the seat exerts against his body. Compare this with his weight using a ratio. (b) Calculate the direction and magnitude of the total force the seat exerts against his body.

Answers

Explanation:

It is given that,

Mass of the passenger, m = 75 kg

Acceleration of the rocket, a=49\ m/s^2

(a) The horizontal component of the force the seat exerts against his body is given by using Newton's second law of motion as :

F = m a

F=75\ kg* 49\ m/s^2

F = 3675 N

Ratio, R=(F)/(W)

R=(3675)/(75* 9.8)=5

So, the ratio between the horizontal force and the weight is 5 : 1.

(b) The magnitude of total force the seat exerts against his body is F' i.e.

F'=√(F^2+W^2)

F'=√((3675)^2+(75* 9.8)^2)

F' = 3747.7 N

The direction of force is calculated as :

\theta=tan^(-1)((W)/(F))

\theta=tan^(-1)((1)/(5))

\theta=11.3^(\circ)

Hence, this is the required solution.

Final answer:

The horizontal component of the force the seat exerts against the passenger's body is 3675 N. The ratio of this force to the passenger's weight is 5. The total force the seat exerts has a magnitude of 3793 N.

Explanation:

(a) To calculate the horizontal component of the force the seat exerts against the passenger's body, we can use Newton's second law, which states that force is equal to mass times acceleration. In this case, the mass of the passenger is 75.0 kg and the acceleration of the rocket sled is 49.0 m/s2. So the force exerted by the seat is:

Force = mass * acceleration

Force = 75.0 kg * 49.0 m/s2

Force = 3675 N

Now let's compare this force to the passenger's weight. The weight of an object is given by the formula:

Weight = mass * gravitational acceleration

Weight = 75.0 kg * 9.8 m/s2

Weight = 735 N

To find the ratio, we divide the force exerted by the seat by the weight of the passenger:

Ratio = Force / Weight

Ratio = 3675 N / 735 N

Ratio = 5

(b) The total force the seat exerts against the passenger's body has both a horizontal and vertical component. The direction of the total force is the same as the direction of the acceleration of the rocket sled. The magnitude of the total force can be found using the Pythagorean theorem:

Total Force = √(horizontal component2 + vertical component2)

Total Force = √(36752 + 7352)

Total Force = 3793 N

Learn more about Force here:

brainly.com/question/13191643

#SPJ11

A softball player swings a bat, accelerating it from rest to 2.6 rev/srev/s in a time of 0.20 ss . Approximate the bat as a 0.90-kgkg uniform rod of length 0.95 mm, and compute the torque the player applies to one end of it.

Answers

Answer:

\tau=22.13Nm

Explanation:

information we have:

mass: m=0.9kg

lenght: L=0.95m

frequency: f=2.6rev/s

time: t=0.2s

and from the information we have we can calculate the angular velocity \omega. which is defined as

\omega=2\pi f

\omega=2\pi (2.6rev/s)\n\omega=16.336 rev/s

----------------------------

Now, to calculate the torque

We use the formula

\tau=I \alpha

where I  is the moment of inertia and \alpha is the angular acceleration

moment of inertia of a uniform rod about the end of it:

I=(1)/(3)mL^2

substituting known values:

I=(1)/(3) (0.9kg)(0.95m)^2\nI=0.271kg/m^2

for the torque we also need the acceleration \alpha which is defined as:

\alpha=(\omega)/(t)

susbtituting known values:

\alpha=(16.336rev/s)/(0.2s) \n\alpha=81.68rev/s^2

and finally we substitute I and  \alpha  into the torque equation \tau=I \alpha:\tau=(0.271kg/m^2)(81.68rev(s^2)\n\tau=22.13Nm

Final answer:

To calculate the torque, we need to use the formula: Torque = Moment of Inertia * Angular Acceleration. By approximating the bat as a uniform rod and using its length and mass, we can find the moment of inertia. Then, using the given angular velocity, we can calculate the angular acceleration. Finally, we can determine the torque by multiplying the moment of inertia by the angular acceleration.

Explanation:

To compute the torque the player applies to one end of the bat, we need to use the formula:



Torque = Moment of Inertia * Angular Acceleration



Given that the bat is approximated as a uniform rod and we know its length and mass, we can calculate the moment of inertia. Then, using the given angular velocity, we can compute the angular acceleration. Finally, we can find the torque by multiplying the moment of inertia by the angular acceleration.

Learn more about Torque here:

brainly.com/question/33222069

#SPJ3

If the speed of light in a medium is 2 x 10^8 m/s, the medium's index of refraction is?

Answers

speed of light in the air is 3 x 10^8
so index of refractions would be speed of light divided by speed in the medium
3/2 = 1.5

Answer: n=1.5

by the way it is glass :) 

When a 20.0-ohm resistor is connected across the terminals of a 12.0-V battery, the voltage across the terminals of the battery falls by 0.300 V. What is the internal resistance of this battery

Answers

The internal resistance of the battery is 0.5 ohms.

To calculate the internal resistance of the battery, we use the formula below

Formula:

  • (V/R)r = V'............. Equation 1

Where:

  • V = Voltage across the terminal of the battery
  • R = Resistance connected across the battery
  • r = internal resistance of the battery
  • V' = voltage drop of the battery.

Make r the subject of the equation

  • r = V'R/V............ Equation 2

From the question,

Given:

  • V = 12 V
  • R = 20 ohms
  • V' = 0.3 V

Substitute these values into equation 2

  • r = (0.3×20)/12
  • r = 6/12
  • r = 0.5 ohms.

Hence, The internal resistance of the battery is 0.5 ohms.

Learn more about internal resistance here: brainly.com/question/14883923

Answer:

The  internal resistance is  r =  0.5 \ \Omega

Explanation:

From the question we are told that the resistance of

   The  resistance of the resistor is  R  =  20.0\  \Omega

    The  voltage is V  = 12.0 \ V

     The magnitude of the voltage fall is  e   =  0.300\  V

Generally the current flowing through the terminal due to the voltage of the battery  is  mathematically represented as

        I  =  (V)/(R)

substituting values

        I  =  (12.0 )/(20 )

       I  =  0.6 \ A

The internal resistance of the battery is mathematically represented as

      r =  (e)/(I)

substituting values

     r =  (0.300)/( 0.6 )

    r =  0.5 \ \Omega