WILL MARK BRAINLIEST PLS HELPPP -- Which of Newton’s Laws explains why the satellite would collide with the moon if gravity is “turned off?”picture attached
WILL MARK BRAINLIEST PLS HELPPP -- Which of Newton’s Laws - 1

Answers

Answer 1
Answer:

Answer:

b

Explanation:

Answer 2
Answer: B is the answer sorry for the late response

Related Questions

A toy car is tied to a string and pulled across a table horizontally. Which is thecorrect free-body diagram for this situation?TFNFNTFNENTWWWwАBСDΟ Α. Α
A river 500 ft wide flows with a speed of 8 ft/s with respect to the earth. A woman swims with a speed of 4 ft/s with respect to the water.1) If the woman heads directly across the river, how far downstream is she swept when she reaches the opposite bank?2) If she wants to be swept a smaller distance downstream, she heads a bit upstream. Suppose she orients her body in the water at an angle of 37° upstream (where 0° means heading straight accross, how far downstream is she swept before reaching the opposite bank?3) For the conditions, how long does it take for her to reach the opposite bank?
A block of ice with mass 2.00 kg slides 0.775 m down an inclined plane that slopes downward at an angle of 31.8 ∘ below the horizontal. A) If the block of ice starts from rest, what is its final speed? You can ignore friction.
A volumetric flask made of Pyrex is calibrated at 20.0°C. It is filled to the 150-mL mark with 34.5°C acetone. After the flask is filled, the acetone cools and the flask warms so that the combination of acetone and flask reaches a uniform temperature of 32.0°C. The combination is then cooled back to 20.0°C. (The average volume expansion coefficient of acetone is 1.50 10-4(°C)−1.) (a) What is the volume of the acetone when it cools to 20.0°C?
How does activity on the Sun affect natural phenomena on Earth?

An electric field of 710,000 N/C points due west at a certain spot. What is the magnitude of the force that acts on a charge of -6.00 C at this spot? (14C - 10 6C) Give your answer in Si unit rounded to two decimal places

Answers

Answer:

4.26*10^6N

Explanation:

A charge within an electric field E experiences a force proportional to the field whose module is F = qE, whose direction is the same, if the charge is negative, it experiences a force in the opposite direction to the field and if the charge is positive, experience a force in the same direction of the field.

In our case we are interested in the magnitude of the force, therefore the sign of the charge has no relevance

\left | F \right |=\left |q  \right |  \left |E\right |\n\left | F \right |=6.00C*710000(N)/(C)=4.26*10^6N

Two workers are sliding 300 kg crate across the floor. One worker pushes forward on the crate with a force of 400 N while the other pulls in the same direction with a force of 290 N using a rope connected to the crate. Both forces are horizontal, and the crate slides with a constant speed. What is the crate's coefficient of kinetic friction on the floor

Answers

Answer:

The kinetic coefficient of friction of the crate is 0.235.

Explanation:

As a first step, we need to construct a free body diagram for the crate, which is included below as attachment. Let supposed that forces exerted on the crate by both workers are in the positive direction. According to the Newton's First Law, a body is unable to change its state of motion when it is at rest or moves uniformly (at constant velocity). In consequence, magnitud of friction force must be equal to the sum of the two external forces. The equations of equilibrium of the crate are:

\Sigma F_(x) = P+T-\mu_(k)\cdot N = 0 (Ec. 1)

\Sigma F_(y) = N - W = 0 (Ec. 2)

Where:

P - Pushing force, measured in newtons.

T - Tension, measured in newtons.

\mu_(k) - Coefficient of kinetic friction, dimensionless.

N - Normal force, measured in newtons.

W - Weight of the crate, measured in newtons.

The system of equations is now reduced by algebraic means:

P+T -\mu_(k)\cdot W = 0

And we finally clear the coefficient of kinetic friction and apply the definition of weight:

\mu_(k) =(P+T)/(m\cdot g)

If we know that P = 400\,N, T = 290\,N, m = 300\,kg and g = 9.807\,(m)/(s^(2)), then:

\mu_(k) = (400\,N+290\,N)/((300\,kg)\cdot \left(9.807\,(m)/(s^(2)) \right))

\mu_(k) = 0.235

The kinetic coefficient of friction of the crate is 0.235.

Final answer:

The calculation of the coefficient of kinetic friction involves setting the total force exerted by the workers equal to the force of friction, as the crate moves at a constant speed. The coefficient of kinetic friction is then calculated by dividing the force of friction by the normal force, which is the weight of the crate. The coefficient of kinetic friction for the crate on the floor is approximately 0.235.

Explanation:

To calculate the coefficient of kinetic friction, we first must understand that the crate moves at a constant velocity, indicating that the net force acting on it is zero. Thus, the total force exerted by the workers (400 N + 290 N = 690 N) is equal to the force of friction acting in the opposite direction.

Since the frictional force (F) equals the normal force (N) times the coefficient of kinetic friction (μk), we can write the equation as F = μkN. Here, the normal force is the weight of the crate, determined by multiplying the mass (m) of the crate by gravity (g), i.e., N = mg = 300 kg * 9.8 m/s² = 2940 N.

Next, we rearrange the equation to solve for the coefficient of kinetic friction: μk = F / N. Substituting the known values (F=690 N, N=2940 N), we find: μk = 690 N / 2940 N = 0.2347. Thus, the coefficient of kinetic friction for the crate on the floor is approximately 0.235.

Learn more about the Coefficient of kinetic friction here:

brainly.com/question/30394536

#SPJ3

In this example the motion is in a vertical circle. Passengers in a carnival ride travel in a circle with radius 5.0 m. The ride moves at a constant speed and makes one complete circle in a time T=4.0s. What is the acceleration of the passengers? If the ride increases in speed so that T=3.0s, what is arad? (This question can be answered by using proportional reasoning, without much arithmetic.)

Answers

Answer:

a. 12.3m/s^(2)

b. 21.93m/s^(2)

Explanation:

From the data given, the radius is 5.0m, and the time taken to complete one circle is 4.0secs

Since the motion is in a circular part, we can conclude that the total distance covered in this time is given as circumference of the circle.

which is expressed as

Distance=2\pi R

To determine the speed, we use the equation

speed=(distnce)/(time)\n Speed=(2\pi R)/(time)\n speed=(2\pi*5 )/(4)\n Speed=7.85m/s

The acceleration as required is expressed as

a=(v^(2))/(r)\n a=(7.85^(2))/(5)\n a=12.3m/s^(2)

if the speed increase and it takes 3secs to complete one circle, the speed is

speed=(distnce)/(time)\n Speed=(2\pi R)/(time)\n speed=(2\pi*5 )/(3)\n Speed=10.47m/s

and the acceleration becomes

a=(v^(2))/(r)\n a=(10.47^(2))/(5)\n a=21.93m/s^(2)

The acceleration of the passengers in the vertical circle carnival ride is 19.6 m/s^2. When the time taken to complete one circle is 3.0 s, the new acceleration is 26.13 m/s^2.

The acceleration of the passengers can be determined using the centripetal acceleration formula, which is given by a = v^2 / r.

In this case, the velocity v can be found by dividing the circumference of the circle (2πr) by the time taken to complete one circle (T). The radius r is given as 5.0 m. Plugging in the values, we have:

a = (v^2) / r = ((2πr / T)^2) / r = (4π^2r) / T^2 = (4π^2 * 5.0) / 16.0 = 19.6 m/s^2

To find the new acceleration when the time taken to complete one circle is 3.0 s, we can use the proportional reasoning to determine the relationship between the two accelerations. Since the time is inversely proportional to the acceleration, when T is 3.0 s, the new acceleration arad can be found using the equation:

arad / 19.6 = 4.0 / 3.0

Simplifying the equation, arad = (19.6 * 4.0) / 3.0 = 26.13 m/s^2

For more such questions on acceleration, click on:

brainly.com/question/34159935

#SPJ3

If a coil stays at rest in a very large static magnetic field, no emf is induced in this coil. Group of answer choices True False

Answers

Answer:

True

Explanation:

  • Faraday's Law says that there is a emf induced in a conductor when the vector flux of the magnetic field across it changes in time.
  • This can be true due to one of two facts, either the magnitude of the magnetic field changes in time, or the area through which the flux occurs changes due to the movement of the object.
  • In this case, due to the magnetic field is constant, and the coil stays at rest, there is no possible change in flux, so emf induced is zero.

For a certain optical medium the speed of light varies from a low value of 1.80 × 10 8 m/s for violet light to a high value of 1.92 × 10 8 m/s for red light. Calculate the range of the index of refraction n of the material for visible light.

Answers

Answer:

1.56 - 1.67

Explanation:

Refractive index of any material is given as the ratio of the speed of light in a vacuum to the speed of light in that medium.

Mathematically, it is given as:

n = c/v

Where c is the speed of light in a vacuum and v is the speed of light in the medium.

Given that the speed of light in the optical medium varies from 1.8 * 10^8 m/s to 1.92 * 10^8 m/s, we can find the range of the refractive index.

When the speed is 1.8 * 10^8 m/s, the refractive index is:

n = (3 * 10^8) / (1.8 * 10^8)

n = 1.67

When the speed is 1.92 * 10^8 m/s, the refractive index is:

n = (3 * 10^8) / (1.92 * 10^8)

n = 1.56

Therefore, the range of values of the refractive index of the optical medium is 1.56 - 1.67.

A vertical straight wire carrying an upward 24-A current exerts an attractive force per unit length of 88 X 104N/m on a second parallel wire 7.0 cm away. What current (magnitude and direction) flows in the second wire?

Answers

Answer:

The current flows in the second wire is 1.3*10^(10)\ A

Explanation:

Given that,

Upward current = 24 A

Force per unit length(F)/(l) =88*10^(4)\ N/m

Distance = 7.0 cm

We need to calculate the current in second wire

Using formula of magnetic force

F=ILB

(F)/(l)=(\mu I_(1)I_(2))/(2\pi r)

Where,

(F)/(l)=force per unit length

I₁= current in first wire

I₂=current in second wire

r = distance between the wires

Put the value into the formula

88*10^(4)=(4\pi*10^(-7)*24* I_(2))/(2\pi *7*10^(-2))

I_(2)=(88*10^(4)*7*10^(-2))/(2**10^(-7)*24)

I_(2)=1.3*10^(10)\ A

Hence, The current flows in the second wire is 1.3*10^(10)\ A