How does light move?

Answers

Answer 1
Answer:

Answer:

Light travels as a wave. But unlike sound waves or water waves, it does not need any matter or material to carry its energy along. This means that light can travel through a vacuum—a completely airless space. It speeds through the vacuum of space at 186,400 miles (300,000 km) per second.

Explanation:

Hope this helps :))


Related Questions

A train whistle is heard at 300 Hz as the train approaches town. The train cuts its speed in half as it nears the station, and the sound of the whistle is then 290 Hz. What is the speed of the train before and after slowing down?
The hormone glucagon is released by number of different tissues in the body to stabilize blood glucose levels. Which of the following pathways is least ikely to be activated by glucagon in hepatocytes? cells in the pancreas when blood sugar levels are low. It acts on a gluconeogenesis O glycogenolysis O ? oxidation glycolysis
A 60.0-kg boy is surfing and catches a wave which gives him an initial speed of 1.60 m/s. He then drops through a height of 1.57 m, and ends with a speed of 8.50 m/s. How much nonconservative work was done on the boy
Help me with my physics, please
Which of the following is not a risk associated with using legal drugs without medical supervision

A small grinding wheel is attached to the shaft of an electric motor which has a rated speed of 3600 rpm. When the power is turned on, the unit reaches its rated speed in 5 s, and when the power is turned off, the unit coasts to rest in 70 s. Assuming uniformly accelerated motion, determine the number of revolutions that the motor executes (a) in reaching its rated speed, (b) in coasting to rest.

Answers

Answer:

(a) θ1 = 942.5rad, (b) θ2 = 13195 rad

Explanation:

(a) Given

ωo = 0 rad/s

ω = 3600rev/min = 3600×2(pi)/60 rad/s

ω = 377rad/s

t1 = 5s

θ1 = (ω + ωo)t/2

θ1 = (377 +0)×5/2

θ1 = 942.5 rads

(b) ωo = 377rad/s

ω = 0 rad/s

t2 = 70s

θ2 = (ω + ωo)t/2

θ2 = (377 +0)×70/2

θ2 = 13195 rad

A 1kg ball is dropped (from rest) 100m onto a spring with spring constant 125N/m. How much does the spring compress?

Answers

Answer:

3.95 m

Explanation:

m = 1 kg, h = 100 m, k = 125 N/m

Let the spring is compressed by y.

Use the conservation of energy

potential energy of the mass is equal to the energy stored in the spring

m x g x h = 1/2 x ky^2

1 x 9.8 x 100 = 0.5 x 125 x y^2

y^2 = 15.68

y = 3.95 m

Calculate the ionization potential for C+5 ( 5 electrons removed for the C atom) and in addition compute the wavelength of the transition from n=3 to n= 2.

Answers

Answer:

Ionization potential of C⁺⁵ is 489.6 eV.

Wavelength of the transition from n=3 to n=2 is 1.83 x 10⁻⁸ m.

Explanation:

The ionization potential of hydrogen like atoms is given by the relation :

E = (13.6Z^(2) )/(n^(2) ) eV     .....(1)

Here E is ionization potential, Z is atomic number and n is the principal quantum number which represents the state of the atom.

In this problem, the ionization potential of Carbon atom is to determine.

So, substitute 6 for Z and 1 for n in the equation (1).

E = (13.6*(6)^(2) )/(1^(2) )

E = 489.6 eV

The wavelength (λ)  of the photon due to the transition of electrons in Hydrogen like atom is given by the relation :

(1)/(\lambda) =RZ^(2)[(1)/(n_(1) ^(2))-(1)/(n_(2) ^(2) )]     ......(2)

R is Rydberg constant, n₁ and n₂ are the transition states of the atom.

Substitute 6 for Z, 2 for n₁, 3 for n₂ and 1.09 x 10⁷ m⁻¹ for R in equation (2).

(1)/(\lambda) =1.09*10^(7) *6^(2)[(1)/(2 ^(2))-(1)/(3 ^(2) )]

(1)/(\lambda)  = 5.45 x 10⁷

λ = 1.83 x 10⁻⁸ m

Why do electrical devices have resistance​

Answers

As electrons move through the conductor, some collide with atoms, other electrons, or impurities in the metal.

a mass of .4 kg is raised by a vertical distance of .450 m in the earth's gravitational field. what is the change in its gravitational potential energy

Answers

Answer:

E = 1.76 J

Explanation:

Given that,

Mass of an object, m = 0.4 kg

It moves by a vertical distance of 0.45 m in the Earth's gravitational field.

We need to find the change in its gravitational potential energy. It can be given by the formula as follow :

E=mgh\n\nE=0.4* 9.8* 0.45\n\nE=1.76\ J

So, the change in its gravitational potential energy is 1.76 J.

Suppose a boat moves at 16.4 m/s relative to the water. If the boat is in a river with the current directed east at 2.70 m/s, what is the boat's speed relative to the ground when it is heading east, with the current, and west, against the current? (Enter your answers in m/s.)

Answers

Answer:

with the current: 19.1 m/s eastern

against the current: 13.7 m/s western

Explanation:

The boat speed relative to ground is the sum of the boat speed relative to water + the water speed relative to ground.

Suppose eastern is positive, water speed due east is 2.7m/s.

When the boat is heading east, its speed relative to water is 16.4m/s, its speed relative to ground is 16.4 + 2.7 = 19.1 m/s eastern

When the boat is heading west, its speed relative to water is -16.4m/s, its speed relative to ground is -16.4 + 2.7 = -13.7 m/s western