Please show steps as to how to solve this problem
Thank you!
Please show steps as to how to solve this problem - 1

Answers

Answer 1
Answer:

Answer:

Torques must balance

F1 * X1 = F2 * Y2

or M1 g X1 = M2 g X2

X2 = M1 / M2 * X1 = 130.4 / 62.3 * 10.7

X2 = 22.4 cm

Torque = F1  * X2 =

62.3 gm* 980 cm/sec^2  * 22.4 cm = 137,000 gm cm^2 / sec^2

Normally x cross y   will be out of the page

r X F  for F1 will be into the page so the torque must be negative


Related Questions

Could you please solve it with shiwing the full work1-A high powered projectile is fired horizontally from the top of a cliff at a speed of 638.6 m/s. Determine the magnitude of the velocity (in m/s) after 5 seconds.Take gravitational acceleration to be 9.81 m/s2.2-A man throws a ball with a velocity of 20.9 m/s upwards at 33.2° to the horizontal. At what vertical distance above the release height (in metres) will the ball strike a wall 13.0 m away ?Take gravitational acceleration to be 9.81 m/s2.3-A particle is moving along a straight path and its position is defined by the equation s = (1t3 + -5t2 + 3) m, where t is measured in seconds. Determine the average velocity (in m/s) of the particle when t = 5 seconds.4-A particle has an initial speed of 26 m/s. The particle undergoes a deceleration of a = (-9t) m/s2, where t is measured in seconds. Determine the distance (in metres) the particle travels before it stops. When t = 0, s = 0.
Look at the Kunoichi's of Naruto but as a Gang. Who do you think looks the baddest out of the group(but in a good way)?My opinion is Hinata...just saying
Which of the following organisms has an adaptation that will allow it to survive in tundra biome? *A.)Plants with roots that are short and grows sideways with hairy stems and small leaves.B.)Plants that have broad leaves to capture sunlight and long roots to penetrate the soil.C.)Animals with thin fur that allows them to get rid of heat efficiently.D.)Animals with long tongues for capturing prey and sticky pads for climbing trees.
A ball is thrown horizontally from the top of a 60.0-m building and lands 100.0 m from the base of the building. Ignore air resistance. (a) How long is the ball in the air? (b) What must have been the initial horizontal component of the velocity? (c) What is the vertical component of the velocity just before the ball hits the ground? (d) What is the velocity (including both the horizontal and vertical components) of the ball just before it hits the ground?
Singing that is off-pitch by more than about 1% sounds bad. How fast would a singer have to be moving relative to the rest of a band to make this much of a change in pitch due to the Doppler effect

A 60.0-kg boy is surfing and catches a wave which gives him an initial speed of 1.60 m/s. He then drops through a height of 1.57 m, and ends with a speed of 8.50 m/s. How much nonconservative work was done on the boy

Answers

Answer:

Work = 1167.54 J

Explanation:

The amount of non-conservative work here can be given by the difference in kinetic energy and the potential energy. From Law of conservation of energy, we can write that:

Gain in K.E = Loss in P.E + Work

(0.5)(m)(Vf² - Vi²) - mgh = Work

where,

m = mass of boy = 60 kg

Vf = Final Speed = 8.5 m/s

Vi = Initial Speed = 1.6 m/s

g = 9.8 m/s²

h = height drop = 1.57 m

Therefore,

(0.5)(60 kg)[(8.5 m/s)² - (1.6 m/s)²] - (60 kg)(9.8 m/s²)(1.57 m) = Work

Work = 2090.7 J - 923.16 J

Work = 1167.54 J

What best describes the bromide ion that forms

Answers

Answer:

it A

Explanation:

Its a negative ion that hss one less valence electron than a netural bromine atom

A charge of uniform volume density (40 nC/m3) fills a cube with 8.0-cm edges. What is the total electric flux through the surface of this cube?

Answers

Answer:

The flux through the surface of the cube is 2.314\ Nm^(2)/C

Solution:

As per the question:

Edge of the cube, a = 8.0 cm = 8.0* 10^(- 2)\ m

Volume Charge density, \rho_(v) = 40 nC/m^(3) = 40* {- 9}\ C/m^(3)

Now,

To calculate the electric flux:

\phi = (q)/(\epsilon_(o))                                                      (1)

where

\phi = electric flux

\epsilon_(o) = 8.85* 10^(- 12)\ F/m = permittivity of free space  

Volume Charge density for the given case is given by the formula:

\rho_(v) = (Total\ charge, q)/(Volume of cube, V)                  (2)

Volume of cube, V = a^(3)

Thus

V = (8.0* 10^(- 2))^(3) = 5.12* 10^(- 4)\ m^(3)

Thus from eqn (2), the total charge is given by:

q = \rho_(v)V = 40* {- 9}* 5.12* 10^(- 4)

q = 2.048* 10^(-11)\ F = 20.48\ pF

Now, substitute the value of 'q' in eqn (1):

\phi = (2.048* 10^(-11))/(8.85* 10^(- 12)) = 2.314\ Nm^(2)/C

Professional baseball pitchers deliver pitches that can reach the blazing speed of 100 mph (miles per hour). A local team has drafted an up-and-coming, left-handed pitcher who can consistently pitch at 42.91 m/s (96.00 mph) . Assuming a pitched ball has a mass of 0.1434 kg and has this speed just before a batter makes contact with it, how much kinetic energy does the ball have?

Answers

Answer: 132.02 J

Explanation:

By definition, the kinetic energy is written as follows:

KE = 1/2 m v²

In our question, we know from the question, the following information:

m = 0.1434 Kg

v= 42.91 m/s

Replacing in the equation for KE, we have:

KE = 1/2 . 0.1434 Kg. (42.91)² m²/s² ⇒ KE = 132.02 N. m = 132.02 J

A 5-kg moving at 6 m/s collided with a 1-kg ball at rest. The ball bounce off each other and the second ball moves in the same direction as the first ball at 10 m/sec. What is the velocity of the first ball after the collision?

Answers

Given :

A 5-kg moving at 6 m/s collided with a 1-kg ball at rest.

The ball bounce off each other and the second ball moves in the same direction as the first ball at 10 m/sec.

To Find :

The velocity of the first ball after the collision.

Solution :

We know, by conservation of momentum :

m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2

Putting all given values with directions ( one side +ve and other side -ve ).

5* 6 + 1* 0 =5 * v_1 + 1* 10\n\n5v_1=10-30\n\nv = -4 \ m/s

Therefore, the velocity of first ball after the collision is 4 m/s after in opposite direction.

Hence, this is the required solution.

When water freezes, its volume increases by 9.05% (that is, ΔV / V0 = 9.05 × 10-2). What force per unit area is water capable of exerting on a container when it freezes? (It is acceptable to use the bulk modulus of water, B = 2.2 × 109 N/m2, for this problem.) Give your answer in N/cm2.

Answers

Answer:

P = 1.99 10⁸ Pa

Explanation:

The definition of the bulk module is

      B = - P / (ΔV / V)

The negative sign is included for which balk module is positive, P is the pressure and V that volume

They tell us that the variation in volume is 9.05%, that is

    ΔV / V = ​​9.0Δ5 / 100 = 0.0905

    P = - B DV / V

    P = 2.2 10⁹ (0.0905)

    P = 1.99 10⁸ Pa

Other Questions