Young students show a preference for which modality?

Answers

Answer 1
Answer:

Answer. In the present study, it was found that 61% students had multimodal learning style preferences and that only 39% students had unimodal preferences. Amongst the multimodal learning styles, the most preferred mode was bimodal, followed by trimodal and quadrimodal respectively 

Explanation:


Related Questions

In this type of projection, the angles between the three axes are different:- A) Isometric B) Axonometric C) Trimetric D) Dimetnic
FILLIN THE BLANK Buffering is an important op amp application because it solves _____ that can't easily be solved with purely resistive circuits.Group of answer choices
A rocket is launched vertically from rest with a constant thrust until the rocket reaches an altitude of 25 m and the thrust ends. The rocket has mass 2 kg and thrust force 35 N. Neglecting air resistance, determine (a) the speed of the rocket when the thrust ends, (b) the maximum height reached by the rocket, and (c) the speed of the rocket when it returns to the ground.
How to find magnitude of net electric charge when current flows through a capacitor with initial charge?
A power plant burns natural gas to supply heat to a heat engine which rejects heat to the adjacent river. The power plant produces 800 MW of electrical power and has a thermal efficiency of 38%. Determine the heat transfer rates from the natural gas and to the river, in MW.

A system with a mass of 8 kg, initially moving horizontally with a velocity of 40 m/s, experiences a constant horizontal force of 25 N opposing the direction of motion. As a result, the system comes to rest.
​Determine the amount of energy transfer by work, in kJ, for this process and the total distance, in m, that the system travels.

Answers

Answer:

The kinetic energy is 6.4 kJ and the distance traveled by the system is 256 m.

Explanation:

Given the mass of the system (m) is 8 kg.

And initially, it moves with a velocity (v) 40 m/s.

Also, it experiences 25 N force (f) which opposes its motion.

We need to find the kinetic energy and the distance traveled by the system (d) before going to rest.

It will be the kinetic energy of 8 kg mass with 40 m/s velocity that is transferred to work.

K.E=(1)/(2)mv^2\nK.E=(1)/(2)* 8* 40^2\nK.E= 6400\ J\nK.E=6.4\ kJ

Since this system is opposed by 25 N force, work done by the force will be.

W=f(d)

And the kinetic energy transferred to work. We can equate them.

f(d)=6400\n25(d)=6400\nd=(6400)/(25)=256\ m

So, the system will travel 256 m.

A hydraulic jump is induced in an 80 ft wide channel. The water depths on either side of the jump are 1 ft and 10 ft. Please calculate: a) The velocity of the faster moving flow. b) The flow rate (discharge). c) The Froude number of the sub-critical flow. d) The flow energy dissipated in the hydraulic jump (expressed as percentage of the energy prior to the jump). e) The critical depth.

Answers

Answer:

a) The velocity is 42.0833 ft/s

b) The flow rate is 3366.664 ft³/s

c) The Froude number is 0.2345

d) The flow energy dissipated (expressed as percentage of the energy prior to the jump) is 18.225 ft

e) The critical depth is 3.8030 ft

Explanation:

Given data:

80 ft wide channel, L

1 ft and 10 ft water depths, d₁ and d₂

Questions: a) Velocity of the faster moving flow, v = ?

b) The flow rate (discharge), q = ?

c) The Froude number, F = ?

d) The flow energy dissipated, E = ?

e) The critical depth, dc = ?

a) For the velocity:

(d_(2) )/(d_(1) ) =(1)/(2) (\sqrt{1+8F^(2) } -1)

10*2=\sqrt{1+8F^(2) } -1

Solving for F:

F = 7.4162

v=F\sqrt{gd_(1) }

Here, g = gravity = 32.2 ft/s²

v=7.4162*√(32.2*1) =42.0833ft/s

b) The flow rate:

q=v*L*d_(1) =42.0833*80*1=3366.664ft^(3) /s

c) The Froude number:

v_(2) =(q)/(L*d_(2) ) =(3366.664)/(80*10) =4.2083ft/s

F=\frac{v_(2)}{\sqrt{gd_(2) } } =(4.2083)/(√(32.2*10) ) =0.2345

d) The flow energy dissipated:

E=((d_(2)-d_(1))^(3) )/(4d_(1)d_(2)) =((10-1)^(3) )/(4*1*10) =18.225ft

e) The critical depth:

d_(c) =((((q)/(L))^(2)  )/(g) )^(1/3) =((((3366.664)/(80))^(2)  )/(32.2) )^(1/3) =3.8030ft

. Were you able to observe ???? = 0 in the circuit you constructed during lab? Why or why not? Hint: What value of resistance would be needed for ???? = 0? 2. What feature in the time response of an RLC circuit distinguishes a critically damped response from an underdamped response? 3. Why must an op-amp be powered to be used in a circuit? 4. If you were handed a parts kit with an unknown op-amp, what information would you need to find prior to using it in a circuit?

Answers

Answer:

an attachment is below

Explanation:

1) the formula for damping coefficient id for RLC series circuit.

For \xi =0 you can make c=0 but inductor will still have some capacitance.

2) the responses of critically damped system and under damped system are shown with comments on their time response.

4) There can be many different answers to this question, but the 4 I have mentioned are the most important parameters we need to know about an unknown op-amp if we are to use it in our circuit.

Hope it answers all your questions.

Propane (C3H8) burns completely with 150% of theoretical air entering at 74°F, 1 atm, 50% relative humidity. The dry air component can be modeled as 21% O2 and 79% N2 on a molar basis. The combustion products leave at 1 atm. Determine the mole fraction of water in the products, in lbmol(water)/lbmol(products).

Answers

Answer:

y=0.12 lbmol(water)/lbmol(products)

Explanation:

First we find the humidity of air. Using humidity tables and the temperature we find that is 0.01 g water/L air.

Now we set the equation assuming dry air:

C_(3)H_(8)+7.5(O_(2)+3.76N_(2)) \longrightarrow 3CO_(2)+4H_(2)O+2.5O_(2)+28.2N_(2)

With this equation we have almost all moles that exit the reactor, we are just missing the initial moles of water due to the humidity. So we proceed to calculate it with the ideal gas law:

PV=nRT

Vair=867.7L

With the volume and the fraction of water, we can calculate the mass of water:

0.01 * 867.7=8.677 g of water

Now we calculate the moles of water:

8.677 g / 18 g/mol = 0.48 moles of water

Now we can calculate the total moles of water in the exit of the reactor:

0.48 + 4 = 4.48 moles of water

And finally we just need to sum all moles at the exit of the reactor and divide:

3 moles of CO2 + 2.5 moles of O2+ 4.48 moles of H2O + 28.2 moles of N2

And we have 38.18 moles in total, then:

4.48/38.18=y=0.12 moles of water/moles of products

As the relation moles/moles is equal to lb-moles/lb-moles, we have our fina result:

y=0.12 lbmol(water)/lbmol(products)

In the hydrodynamic entrance region of a pipe with a steady flow of an incompressible liquid A. The average velocity increases with distance from the entrance.
B. The average velocity stays the same with distance from the entrance.
C. The maximum velocity increases with distance from the entrance.
D. The maximum velocity decreases with distance from the entrance.
E. B and C
F. B and D

Answers

Answer:

D. The maximum velocity decreases with distance from the entrance.

Explanation:

This is because over time, the pressure with with the incompressible liquid enters decreases with distance from the entrance

Answer:

C. The maximum velocity increases with distance from the entrance

Explanation:

As the fluid particles moves into the pipe, the layer of fluid in contact with the surface of the pipe come to a complete stop. This layer also causes the fluid

particles in the adjacent layers to gradually slow down as a result of friction between fluid molecules, leaving the fluid at the center of the pipe with the maximum velocity.

Since the fluid is incompressible, to make up for this velocity reduction, the velocity of the fluid at the mid-

section of the pipe has to increase to keep the mass flow rate through the

pipe constant. As a result, a velocity gradient develops along the pipe and the maximum velocity which is at the center of the pipe increases with distance from entrance.

When looking at a chain of processes with a low yield (high defective rate), what is a good place to start investigating the source of variation?

Answers

The most upstream process with issues would be a good location to start exploring the cause of the variance.

Chain processes

A manufacturing technique would be a specific procedure for generating a commodity.

Throughout manufacturing, a six sigma process has been utilized just to generate a product throughout which 99.99966 percent among all possibilities to produce certain aspects of a part seem to be likely toward being defect-free.

Thus the response above is correct.

Find out more information about chain processes here:

brainly.com/question/25646504

Answer: The furthest upstream process that has problems.

A process in manufacturing is a particular method used for producing a product.

A six sigma process is used in processing to produce a product that is 99.99966% of all opportunities to produce some feature of a part are statistically expected to be free of defects.

According to the rules of the six sigma process, when there's a defect, the best thing to do is investigate the furthest upstream process that has problems.

Other Questions