In this type of projection, the angles between the three axes are different:- A) Isometric B) Axonometric C) Trimetric D) Dimetnic

Answers

Answer 1
Answer:

Answer:

The correct answer is C) Trimetric

Explanation:

The most suitable answer is a trimetric projection because, in this type of projection, we see that the projection of the three angles between the axes are not equal. Therefore, to generate a trimetric projection of an object, it is necessary to have three separate scales.


Related Questions

Compute the electrical resistivity of a cylindrical silicon specimen 7.0 mm (0.28 in.) diameter and 57 mm (2.25 in.) in length in which a current of 0.25 A passes in an axial direction. A voltage of 24 V is measured across two probes that are separated by 45 mm (1.75 in.).
B. Suppose R1 is a fuse which burns out due to a sudden surge of current, thus, it essentially becomes an open switch. How do the currents change after this?
The Rappahannock River near Warrenton, VA, has a flow rate of 3.00 m3/s. Tin Pot Run (a pristine stream) discharges into the Rappahannock at a flow rate of 0.05 m3/s. To study mixing of the stream and river, a conserva- tive tracer is to be added to Tin Pot Run. If the instruments that can mea- sure the tracer can detect a concentration of 1.0 mg/L, what minimum concentration must be achieved in Tin Pot Run so that 1.0 mg/L of tracer can be measured after the river and stream mix? Assume that the 1.0 mg/L of tracer is to be measured after complete mixing of the stream and Rappa- hannock has been achieved and that no tracer is in Tin Pot Run or the Rap- pahannock above the point where the two streams mix. What mass rate (kg/d) of tracer must be added to Tin Pot Run?
You are analyzing an open-return wind tunnel that intakes air at 20 m/s and 320K. When the flow exits the wind tunnel it is moving at a speed of 250 m/s. What is the temperature of the flow exiting that wind tunnel
An input voltage of 9.2 V is to be converted into its digital counterpart using an analog-to digital converter. The voltage range is 0 to 16 V. The ADC has 4-bit capacity. Determine: (a) What are the number of quantization levels, resolution, and the maximum quantization error of this ADC

A site is compacted in the field, and the dry unit weight of the compacted soil (in the field) is determined to be 18 kN/m3. Determine the relative compaction if the maximum dry unit weight was measured to be 17 kN/m3. Express your answer as a percentage (but do not write the percentage sign in the answer box).

Answers

Answer:

the relative compaction is 105.88 %

Explanation:

Given;

dry unit weight of field compaction, W_d_((field)) = 18 kN/m³

maximum dry unit weight measured, W_d_((max)) = 17 kN/m³

Relative compaction (RC) of the site is given as the ratio of dry unit weight of field compaction and maximum dry unit weight measured

Relative compaction (RC) = dry unit weight of field compaction / maximum dry unit weight measured

RC = (W_d_((field)))/(W_d_((max)))

substitute the given values;

RC = (18)/(17) = 1.0588

RC (%) = 105.88 %

Therefore, the relative compaction is 105.88 %

Use Newton's method to determine the angle θ, between 0 and π/2 accurate to six decimal places. for which sin(θ) = 0.1. Show your work until you start computing x1, etc. Then just write down what your calculator gives you.

Answers

Answer:

x3=0.100167

Explanation:

Let's find the answer.

Because we are going to find the solution for sin(Ф)=0.1 then:

f(x)=sin(Ф)-0.1 and:

f'(x)=cos(Ф)

Because 0<Ф<π/2 let's start with an initial guess of 0.001 (x0), so:

x1=x0-f(x0)/f'(0)

x1=0.001-(sin(0.001)-0.1)/cos(0.001)

x1= 0.100000

x2=0.100000-(sin(0.100000)-0.1)/cos(0.100000)

x2=0.100167

x3=0.100167

Given the latent heat of fusion (melting) and the latent heat of vaporisation for water are Δhs = 333.2 kJ/kg and Δhv = 2257 kJ/kg, respectively. Use these values to estimate the total energy required to melt 100 kg of ice at 0 °C and boil off 40 kg of water at 100 °C. a) 239,028 kJ b) 95,250 kJ c) 185,500 kJ d) 362,628 kJ e) 123,600 kJ

Answers

Answer:

C)185,500 KJ

Explanation:

Given that

Latent heat fusion = 333.23 KJ/kg

Latent heat vaporisation = 333.23 KJ/kg

Mass of ice = 100 kg

Mass of water = 40 kg

Mass of vapor=60 kg

Ice at 0°C ,first it will take latent heat of vaporisation and remain at constant temperature 0°C and it will convert in to water.After this water which at 0°C will take sensible heat and gets heat up to 100°C.After that at 100°C vapor will take heat as heat of  vaporisation .

Sensible heat for water Q

Q=mC_p\Delta T

For water

C_p=4.178\ KJ/Kg.K

Q=4.178 x 40 x 100 KJ

Q=16,712 KJ

So total heat

Total heat =100 x 333.23+16,712 + 60 x 2257 KJ

Total heat =185,455 KJ

Approx Total heat = 185,500 KJ

So the answer C is correct.

A 100-mm-diameter cast Iron shaft is acted upon by a 10 kN.m bending moment, a 8 kN.m torque, and a 150 kN axial force simultaneously. The ultimate tensile strength of the shaft material is 210 MPa, and the ultimate compressive strength of the shaft material is 750 MPa, determine the safety factor against failure for the above types of loading using a proper theory of failure.

Answers

Answer:

Are you smart You seem smart

Explanation:

im ur dad

Cody’s car accelerates from 0m/s to 45 m/s northward in 15 seconds. What is the acceleration of the car

Answers

Answer:

3 m/s²

Explanation:

Acceleration is calculated as :

a= Δv/ t

where ;

Δv = change in velocity

Δv = 45 - 0 = 45  m/s

t= 15 s

a= 45 /15

a= 3 m/s²

How do we use the brakes in the airplane?

Answers

Answer:

When a pilot pushes the top of the right pedal, it activates the brakes on the right main wheel/wheels, and when the pilot pushes the top of the left rudder pedal, it activates the brake on the left main wheel/wheels. The brakes work in a rather simple way: they convert the kinetic energy of motion into heat energy.

Explanation:

When a pilot pushes the top of the right pedal, it activates the brakes on the right main wheel/wheels, and when the pilot pushes the top of the left rudder pedal, it activates the brake on the left main wheel/wheels. The brakes work in a rather simple way: they convert the kinetic energy of motion into heat energy.