B. Suppose R1 is a fuse which burns out due to a sudden surge of current, thus, it essentially becomes an open switch. How do the currents change after this?

Answers

Answer 1
Answer:

Answer:

The currents becomes 0

Explanation:

when the fuse burns out due to a sudden surge of current and becomes an open switch (with a resistance of Infinity ∞) this automatically reduces the currents through it to zero


Related Questions

There are many diferent materials available for seal faces . List the following seal face materials in order of hardness. i.e Hardest first, softest last. (a) 316 Stainless Steel (b)-Mild steel (c)- Reaction bonded Silicon carbide (d)- Tungsten carbide
Convert the angles of a triangle to radians.Part A31∘43′53′′, 90∘32′11′′, 57∘43′56′′Express your answers, separated by commas, to six significant figures.nothingrad, rad, radRequest AnswerPart B94∘22′19′′, 40∘54′53′′, 44∘42′48′′Express your answers, separated by commas, to six significant figures.
The 15-kg block A slides on the surface for which µk = 0.3. The block has a velocity v = 10 m/s when it is s = 4 m from the 10-kg block B. If the unstrectched spring has a stiffness k = 1000 N/m, determine the maximum compression of the spring due to the collision. Assume the collision is perfectly plastic. Take e=0.6 .
The resultant force is directed along the positive x axis and has a magnitude of 1330 N. Determine the magnitude of F_A. Express your answer to three significant figures and include the appropriate units. Determine the direction theta of F_A. Express your answer using three significant figures.
The following program includes fictional sets of the top 10 male and female baby names for the current year. Write a program that creates: A set all_names that contains all of the top 10 male and all of the top 10 female names. A set neutral_names that contains only names found in both male_names and female_names. A set specific_names that contains only gender specific names. Sample output for all_names: {'Michael', 'Henry', 'Jayden', 'Bailey', 'Lucas', 'Chuck', 'Aiden', 'Khloe', 'Elizabeth', 'Maria', 'Veronica', 'Meghan', 'John', 'Samuel', 'Britney', 'Charlie', 'Kim'}

The average flow speed in a constant-diameter section of the Alaskan pipeline is 2.5 m/s. At the inlet, the pressure is 8.25 MPa (gage) and the elevation is 45 m; at the outlet, the pressure is 350 kPa (gage) and the elevation is 115 m. Calculate the head loss in this section of pipeline.

Answers

Answer:

head loss = 805.327 m

Explanation:

given data

average flow speed v = 2.5 m/s

inlet pressure Pi = 8.25 MPa

elevation Zi =  45 m

outlet pressure Po = 350 kPa

elevation Zo = 115 m

we consider oil Specific Gravity = 0.92

to find out

head loss in this section of pipeline

solution

we find here head loss that is inlet and outlet  

Hi = (Pi)/(\rho g) +(Vi^2)/(2g) +Zi    ..............1

put here value  

Hi = (8.25*10^6)/(920*9.81) +(2.5^2)/(2*9.81) +45

Hi = 959.425 m

and

Hout = (Pout)/(\rho g) +(Vout^2)/(2g) +Zout    ..............2

put here value  

H out = (350*10^3)/(920*9.81) +(2.5^2)/(2*9.81) +115  

H out = 154.098 m

so  

head loss is = Hi - H out  

head loss is = 959.425 - 154.098  

head loss = 805.327 m

Clothing made of several thin layers of fabric with trapped air in between, often called ski clothing, is commonly used in cold climates because it is light, fashionable, and a very effective thermal insulator. So, it is no surprise that such clothing has largely replaced thick and heavy old-fashioned coats. Consider a jacket made up of six layers of 0.1 mm thick synthetic fabric (k = 0.026W/m.K) with 1.2 mm thick air space (k = 0.026 W/m.K) between the fabric layers. Assuming the inner surface temperature of the jacket to be 25˚C and the surface area to be 1.25 m2 , determine the heat loss through the jacket when the temperature of the outdoors is -5˚C and the heat transfer co-efficient of outer surface is 25 W/m2 .K. What would be the thickness of a wool fabric (k = 0.035W/m.K) if the person has to achieve the same level of thermal comfort wearing a thick wool coat instead of a jacket. (30 points)

Answers

Answer:

Q=127.66W

L=9.2mm

Explanation:

Heat transfer consists of the propagation of energy in the form of heat in different ways, these can be convection if it is through a fluid, radiation through electromagnetic waves and conduction through solid solids.

To solve any problem related to heat transfer, the general equation is used

Q = delta / R

Where

Q = heat

Delta = the temperature difference

R = is the thermal resistance by conduction, convection and radiation

to solve this problem we propose the previous equation

Q = delta / R

later we find R

R=[tex]r=(6L1)/(AK1) +(5L2)/(AK2)+(1)/(Ah)

R=(6(0.0001))/((1.25)(0.026)) +(5(0.012))/((1.25)(0.026))+(1)/((25)(1.25)) =0.235 K/w

Q=(25-(-5))/0.235=127.66W

part b

we use the same ecuation with Q=127.66

Q = delta / R

ΔR=(L)/(KA) +(1)/(hA) \nR=(L)/((0.035)(1.25)) +(1)/((25)(1.25))\n R=22.85L+0.032\nQ=(T1-T2)/R\n\n127.66=(25-(-5))/(22.85L+0.032)\nsolving for L\nL=9.2mm

Annealing is a process by which steel is reheated and then cooled to make it less brittle. Consider the reheat stage for a 100-mm-thick steel plate ( 7830 kg/m3 , c 550 J/kg K, k 48 W/m K), which is initially at a uniform temperature of Ti 200 C and is to be heated to a minimum temperature of 550 C. Heating is effected in a gas-fired furnace, where products of combustion at T 800 C maintain a convection coefficient of h 250 W/m2 K on both surfaces of the plate. How long should the plate be left in the furnace

Answers

Answer:

T = 858.25 s

Explanation:

Given data:

Reheat stage for a 100-mm-thick steel plate ( 7830 kg/m3,  c 550 J/kg K, k 48 W/m K),

initial uniform temperature ( Ti ) = 200 c

Final temperature = 550 c

convection coefficient  = 250 w/m^2 k

products combustion temp = 800 c

calculate how long the plate should be left in the furnace ( to attain 550 c )

first calculate/determine the Fourier series Number ( Fo )

(T_(0)-T_(x)  )/(T_(1)-T_(x)  ) = C_(1) e^{(-0.4888^(2)*Fo )}

= 0.4167 = 1.0396e^(-0.4888*Fo)

therefore Fo =  3.8264

Now determine how long the plate should be left in the furnace

Fo = ((k)/(pc_(p) ) ) ( (t)/((L/2)^2) )

k = 48

p = 7830

L = 0.1

Input the values into the relation and make t subject of the formula

hence t = 858.25 s

What is refrigeration capacity and what is meant by a "ton" of refrigeration?

Answers

Answer:

1 ton refrigeration =3.517 kJ/s = 3.517 kW

Explanation:

Refrigeration capacity is defined at the  measure of the effective cooling capacity of a refrigerator which is  expressed in Btu per hour or in tons.

1 ton capacity is a unit of air conditioning and refrigeration which  measure the capacity of air conditioning and refrigeration unit.

One ton  is equal to removal of 3025kcal heat per hour

1 ton refrigeration = 200 Btu/min = 3.517 kJ/s = 3.517 kW = 4.713 HP

A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic field of the stator is rotating

Answers

Answer:

The answer is below

Explanation:

A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic field of the stator is rotating. 2- the speed of the rotor when the slip is 0.05. 3- the frequency of the rotor currents when the slip is 0.04. 4- the frequency of the rotor currents at standstill.

Given that:

number of poles (p) = 4, frequency (f) = 60 Hz

1) The synchronous speed of the motor is the speed at which the magnetic field of the stator is rotating. It is given as:

n_s=(120f)/(p)=(120*60)/(4)=1800\ rpm

2) The slip (s) = 0.05

The speed of the motor (n) is the speed of the rotor, it is given as:

n=n_s-sn_s\n\nn=1800-0.05(1800)\n\nn=1800-90\n\nn=1710\ rpm

3) s = 0.04

The rotor frequency is the product of the supply frequency and slip it is given as:

f_r=sf\n\nf_r=0.04*60\n\nf_r=2.4\ Hz

4) At standstill, the motor speed is zero hence the slip = 1:

s=(n_s-n)/(n_s)\n \nn=0\n\ns=(n_s-0)/(n_s)\n\ns=1

The rotor frequency is the product of the supply frequency and slip it is given as:

f_r=sf\n\nf_r=1*60\n\nf_r=60\ Hz

In contrasting the read-evaluation loop and the notification-based paradigm for inter- active programs, construction of a pre-emptive dialog was discussed. How would a programmer describe a pre-emptive dialog by purely graphical means? (Hint: Refer to the discussion in Sec- tion 8.5 concerning the shift from external and independent dialog management to presentation control of the dialog)

Answers

The way a programmer describe a pre-emptive dialog by purely graphical means is; by producing a window that covers the entire screen to make it the currently selected window.

What is Pre - emptive Dialogue?

In a graphics - based interaction, it is supposed that the user can only interact with parts of the system that are visible. However, In a windowing system, the user can only direct input to a single window that was currently selected and the way to change that selected window is to indicate with some gesture within that window.

Finally, to create a pre-emptive dialog, the system would do so through the production of a window that covers the entire screen to make it the currently selected window. Thereafter, all user input would be directed to that window and the user would have no means of selecting any other window. Then the covering window will now pre-empt any other user action with the exception of that which it is defined to support.

Read more about dialogue at; brainly.com/question/5962406

Answer:

In an illustrations based communication, it is expected that the client can just associate with parts of the framework that are obvious. In a windowing framework, for instance, the client can just direct contribution to a solitary, at present chosen window, and the main methods for changing the chose window would be by demonstrating with some signal inside that window. To make a preemptive exchange, the framework can create a window that covers the whole screen and make it the right now chosen window. All client information would then be coordinated to that window and the client would have no methods for choosing another window. The 'covering' window in this way preempts some other client activity with the exception of that which it is characterized to help