When dots are further apart on a ticker-tape diagram, it indicates an object is moving

Answers

Answer 1
Answer: At a higher velocity.

Hope this helps!
Answer 2
Answer:

Answer:

At a higher velocity.


Related Questions

A 500-gram mass is attached to a spring and executes simple harmonic motion with a period of 0.25 second. If the total energy of the system is 4J, find the force constant of the spring?
Someone help Match the definition to the term. 1. the noun that follows the verb and answers the questions whom or what linking verb 2. a word that expresses action sentence 3. who or what the sentence is about predicate noun 4. a noun that indicates to or for whom or what something is done predicate adjective 5. follows a linking verb and renames the subject direct object subject 6. follows a linking verb and describes a subject verb that joins a subject and a predicate noun or predicate 7. adjective indirect object 8. expresses a complete thought verb
A boat that travels 3.00 m/s relative to the water is crossing a river that is 1.00 km wide. The destination on the far side of the river is 0.500 km downstream from the starting point. (a) If the river current is 2.00 m/s, in what direction should the boat be pointed in order to reach the destination? (b) How much time will the trip take?
Why is there so much more carbon dioxide in the atmosphere of Venus than in that of Earth? Why so much more carbon dioxide than on Mars?
A vertical straight wire carrying an upward 24-A current exerts an attractive force per unit length of 88 X 104N/m on a second parallel wire 7.0 cm away. What current (magnitude and direction) flows in the second wire?

What If? What would be the new angular momentum of the system (in kg · m2/s) if each of the masses were instead a solid sphere 15.0 cm in diameter? (Round your answer to at least two decimal places.)

Answers

Final answer:

To find the new angular momentum of the system if each of the masses were solid spheres, calculate the moment of inertia for each sphere using the formula (2/5) × m × r^2. Multiply the moment of inertia of each sphere by the angular velocity of the system to find the new angular momentum.

Explanation:

The angular momentum of a system can be found by multiplying the moment of inertia of the system with its angular velocity.

If each of the masses were instead a solid sphere 15.0 cm in diameter, we would need to calculate the moment of inertia of each sphere using the formula for the moment of inertia of a solid sphere, I = (2/5) × m × r^2, where m is the mass and r is the radius of the sphere.

Once we have the moment of inertia for each sphere, we can multiply it by the angular velocity of the system to find the new angular momentum.

Learn more about Angular momentum here:

brainly.com/question/37906446

#SPJ12

Final answer:

The new angular momentum, given the same angular speed, will be 0.9 times the original, as the moment of inertia for the system is replaced with that of solid spheres of given mass and radius.

Explanation:

The question is asking for the new angular momentum of a sphere with a given diameter if we replace each of the masses in a given system with it. To compute the new angular momentum, it's crucial to recognize that angular momentum (L) is given by the product of the moment of inertia (I) and angular velocity (w). The moment of inertia for a solid sphere is given by (2/5)mr^2, where m is the mass and r is the radius of the sphere. Since angular velocity has not been specified in the question, it would be assumed to remain unchanged.

So, for this specific system, each mass is replaced with a solid sphere of mass 20 kg and radius 15 cm (or 0.15 m). Thus using the formula for solid sphere inertia, I = (2/5)*(20 kg)*(0.15 m)^2 = 0.9 kg*m^2. If w remains the same, then the new angular momentum L = I * w will be 0.9 times the original angular momentum. This is because w is the same but the moment of inertia has a new value due to the shape and size of the new masses.

Learn more about Angular Momentum here:

brainly.com/question/37906446

#SPJ2

A 500 W heating coil designed to operate from 110 V is made of Nichrome 0.500 mm in diametera.Assuming the resistivity of the nichrome remains constant at is 20.0 degrees C value find the length of wire used.b. Now consider the variation of resistivity with temperature. What power is delivered to the coil of part (a) when it is warmed to 1200 degrees C.?

Answers

(a) Length of the wire is 3.162 m

(b)Power delivered to the coil is 339.7 W

Electrical Power:

The electrical power is given by

P = V² / R

R = V² / P

Resistance of the heating coil, R

R = (110² / 500)

R = 12100 / 500

R = 24.2 Ω

Now the resistivity of a wire is given by

ρ= RA/L

here ρ = 1.50×10⁻⁶ Ωm

so after rearranging we get:

L = RA / ρ

Now, the radius of wirer = 0.5 / 2 mm = 0.25 mm = 2.5×10⁻⁴ m

So the cross sectional area can be calculated as follows

A = \pi r^2\n\nA = \pi * (2.5*10^(-4))^2\n\nA = 1.96*10^(-7) m^2

hence,

L = (24.2 *1.96*10^(-7) / 1.50*10^(-6)) \n\nL = 3.162\; m

(b)The dependency of resistance with temperature is as follows:

R = R₀[1 +  αΔT]

α = 4*10^(-4)^\;oC^(-1) for Nichrome

R' = R [1 + \alpha (1200 - 20) ]\n\nR' = R[1 + \alpha (1180) ]\n\nR' = 24.2[ 1 + 4*10^(-4) * 1180 ]\n\nR' = 24.2[1 + 0.472]\n\nR' = 24.2 * 1.472\n\nR' = 35.62 \;\Omega

So the power generated is :

P = V² / R

P = (110² / 35.62)

P = 12100/ 35.62

P = 339.70 watts

Learn more about electrical power:

brainly.com/question/26174188

Answer:

a) 3.162 m

b) 339.7 W

Explanation:

Assume ρ = 1.50*10^-6 Ωm, and

α = 4.000 10-4(°C)−1 for Nichrome

To solve this, we would use the formula

P = V² / R

So when we rearrange and make R subject of formula, we have

R = V² / P

Resistance of the heating coil, R

R = (110² / 500)

R = 12100 / 500

R = 24.2 ohms

Recall the formula for resistivity of a wire

R = ρ.L/A

Again, in rearranging and making L subject of formula, we have

L = R.A / ρ

To make it uniform, we convert our radius from mm to m.

Diameter, D = 0.5 mm

Radius of wire = 0.5 / 2 mm = 0.25 mm = 0.00025 m

We then use this radius to find our area

A = πr²

A = π * 0.00025²

A = 1.96*10^-7 m²

And finally, we solve for L

L = (24.2 * 1.96*10^-7 / 1.50*10^-6) =

L = 3.162 m

(b)

Temperature coefficient of resistance.

R₁₂₀₀ = R₂₀[1 + α(1200 - 20.0) ]

R₁₂₀₀ = R₂₀[1 + α(1180) ]

R₁₂₀₀ = 24.2[ 1 + 4.*10^-4 * 1180 ]

R₁₂₀₀ = 24.2[1 + 0.472]

R₁₂₀₀ = 24.2 * 1.472

R₁₂₀₀ = 35.62 ohms

Putting this value of R in the first formula from part a, we have

P = V² / R

P = (110² / 35.62)

P = 12100/ 35.62

P = 339.70 watts

By using a 2-meter stick (like the one in lab) marked in millimeters and a stopwatch that measures to 1/100h of a second, you decide to measure the speed of a motorized toy car that travels at a constant velocity. You measure out a 162.0cm interval with the 2-meter stick and time how long it takes the car to travel that distance using the stopwatch. Repeating the ex 2.95 s Calculate the average speed of the toy car What are the absolute and relative uncertainties of the distance and time measurements? Which measurement is more uncertain? Use the weakest link rule to determine the relative and absolute uncertainty in your speed estimation. Explain why it is necessary to calculate relative uncertainties. Why is absolute uncertainty not enougn ent 5 times you get the following time data: 3.11 s 3.15 s 2.84 s 2.97 s

Answers

Answer:

Explanation:

The average speed of a body is defined as the ratio between total distance and total time

    v = dx / dt

    v = 162.0 / 2.95

    v = 54.9 m / s

The absolute errors (uncertainties) of the distance and time measurements as measured with instruments are the errors of the instruments

     Δx = 0.1 cm

     Δt = 0.01 s

Relative errors (uncertainties) are the absolute errors between the measured value

     Er = Δx /x

     Er = 0.1 / 162.0

     Er = 6.2 10⁻⁴        length

     Er = 0.01 / 2.95

     Er = 3.4 10⁻³        time

The most uncertain measure is the time to have a greater relative error

Let's calculate the relative speed error

     Δv / v = dv / dx dx + dv / dt dt

     dv / dx = 1 / t

     dv / dt = x (-1 / t²)

     Er = Δv / v = 1 / t Δx + x / t² Δt

     Er = 0.1 / 2.95 + 162.0/2.95²  0.01

     Er = 0.034 + 0.19

     Er = 0.22

We can observe that the relative error of time is much higher than the relative error of distance, so to reduce the speed error, time must be measured with much more precision

Absolut mistake

   Er = Δv / v

   Δv = Er v

   Δv = 0.22 54.9

   Δv = 12 cm / s

    v± Δv = (5 ±1 ) 10 cm/s

When calculating the relative uncertainty, it is known which magnitude should be more precisely medical to reduce the total error of a derived magnitude

(a) A woman climbing the Washington Monument metabolizes 6.00×102kJ of food energy. If her efficiency is 18.0%, how much heat transfer occurs to the environment to keep her temperature constant? (b) Discuss the amount of heat transfer found in (a). Is it consistent with the fact that you quickly warm up when exercising?

Answers

Answer:

a)

492 kJ

b)

Consistent

Explanation:

Q = Heat stored by woman from food = 600 k J

η = Efficiency of woman = 18% = 0.18

Q' = heat transferred to the environment

heat transferred to the environment is given as

Q' = (1 - η) Q

Inserting the values

Q' = (1 - 0.18) (600)

Q' = 492 kJ

b)

Yes the amount of heat transfer is consistent. The process of sweating produces the heat and keeps the body warm  

Final answer:

A woman climbing the Washington Monument metabolizes food energy with 18% efficiency, meaning 82% of the energy is lost as heat. When we calculate this value, we find that 492 kJ of energy is released as heat, which is consistent with the fact that people quickly warm up when exercising.

Explanation:

The woman climbing the Washington Monument metabolizes 6.00×10² kJ of food energy with an efficiency of 18%. This implies that only 18% of the energy consumed is used for performing work, while the remaining (82%) is lost as heat to the environment.

To calculate the energy lost as heat:

  • Determine the total energy metabolized, which is 6.00 × 10² kJ.
  • Multiply this total energy by the percentage of energy lost as heat (100% - efficiency), which gives: (6.00 × 10² kJ) * (100% - 18%) = 492 kJ.

The released heat of 492 kJ is consistent with the fact that a person quickly warms up when exercising, because a significant portion of the body's metabolic energy is lost as heat due to inefficiencies in converting energy from food into work.

Learn more about Energy Efficiency and Heat Transfer here:

brainly.com/question/18766797

#SPJ3

Instantaneous speed is...a) A speed of 1000 km/h
b) The speed attained at a particular instant in time.
c) The speed that can be reached in a particular amount of time.

PLEASE HURRY

Answers

Answer:

The speed attained at a particular instant in time.

Explanation:

Instantaneous speed is the speed attained at a particular instant in time.

It is given by :

v=(dx)/(dt)

It is equal to the rate of change of speed.

It can be also defined as when the speed of an object is constantly changing, the instantaneous speed is the speed of an object at a particular moment (instant) in time.

Hence, the correct option is (b).

The energy provided each hour by heat to the turbine in an electric power plant is 9.0×10^12 J. If 5.4 × 10^12 J of energy is exhausted each hour from the engine as heat, what is the efficiency of this heat engine?

Answers

Answer:

60 %

Explanation:

Efficiency is defined as the ratio of output power  to the input power.

Input energy each hour = 9 x 10^12 J

Output energy each hour = 5.4 x 10^12 J

Efficiency = Output energy per hour / input energy per hour

Efficiency = (5.4 x 10^12) / ( 9 x 10^12) = 5.4 / 9 = 0.6

Efficiency in percentage form = 0.6 x 100 = 60 %

Final answer:

The efficiency of a heat engine is calculated using the formula (Energy Input - Energy Output) / Energy Input. Given the figures, the efficiency of the engine is 40%, indicating that 40% of the input energy is converted into work.

Explanation:

The efficiency of a heat engine is determined by the ratio of work output to energy input. In the given scenario, the turbine in an electric power plant is supplied with 9.0 x 10^12 joules of energy, and 5.4 x 10^12 joules of energy is expelled as heat per hour. We can calculate the efficiency using the equation:

Efficiency = (Energy Input - Energy Output) / Energy Input

By substituting the given values, Efficiency = (9.0 x 10^12 J - 5.4 x 10^12 J) / 9.0 x 10^12 J = 0.4 or 40%

This means the heat engine of the power plant has a 40% efficiency, meaning 40% of the energy input is converted into work while 60% is discarded as waste heat.

Learn more about Thermal Efficiency here:

brainly.com/question/13039990

#SPJ3