Select the correct answer.Which statement is true if the refractive index of medium A is greater than that of medium B?
A.
O B.
Total internal reflection is possible when light travels from air to medium B to medium A.
Total internal reflection is possible when light travels from medium A to medium B.
Total internal reflection is possible when light travels from medium B to medium A.
D. Total internal reflection is possible when light travels from air to medium A.
E. Total internal reflection is possible when light travels from air to medium B.
C
C.

Answers

Answer 1
Answer:

Final answer:

If the refractive index of medium A is greater than that of medium B, then total internal reflection is possible when light travels from medium B to medium A.


Explanation:

If the refractive index of medium A is greater than that of medium B, then total internal reflection is possible when light travels from medium B to medium A.


Learn more about Refraction of light


Related Questions

An electric generator contains a coil of 140 turns of wire, each forming a rectangular loop 71.2 cm by 22.6 cm. The coil is placed entirely in a uniform magnetic field with magnitude B = 4.32 T and initially perpendicular to the coil's plane. What is in volts the maximum value of the emf produced when the loop is spun at 1120 rev/min about an axis perpendicular to the magnetic field?
A uniform, solid sphere of radius 3.75 cm and mass 4.00 kg starts with a purely translational speed of 1.75 m/s at the top of an inclined plane. The surface of the incline is 3.00 m long, and is tilted at an angle of 26.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ????2 at the bottom of the ramp.
7. An engineer is using a wire that has a resistance of 1.5 . This resistance is too high for the application he is designing. The wire must be exactly 2.5 cm long. What two things could he do to reduce the wire's resistance
A ball connected to a 1.1 m string and is swing in circular fashion. It’s tangential velocity is 15 m/s. What is its centripetal acceleration?
Assume: The bullet penetrates into the block and stops due to its friction with the block. The compound system of the block plus the bullet rises to a height of 0.13 m along a circular arc with a 0.23 m radius. Assume: The entire track is frictionless. A bullet with a m1 = 30 g mass is fired horizontally into a block of wood with m2 = 4.2 kg mass. The acceleration of gravity is 9.8 m/s2 . Calculate the total energy of the composite system at any time after the collision. Answer in units of J. Taking the same parameter values as those in Part 1, determine the initial velocity of the bullet. Answer in units of m/s.

A plane monochromatic electromagnetic wave with wavelength ? = 3 cm, propagates through a vacuum. Its magnetic field is described byB? =(Bxi^+Byj^)cos(kz+?t)

where Bx = 3.3 X 10-6 T, By = 3.9 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively.

1)

What is f, the frequency of this wave?

GHz

2)

What is I, the intensity of this wave?

W/m2

3)

What is Sz, the z-component of the Poynting vector at (x = 0, y = 0, z = 0) at t = 0?

W/m2

4)

What is Ex, the x-component of the electric field at (x = 0, y = 0, z = 0) at t = 0?

V/m

5)

Compare the sign and magnitude of Sz, the z-component of the Poynting vector at (x=y=z=t=0) of the wave described above to the sign and magnitude of SIIz, the z-component of the Poynting vector at (x=y=z=t=0) of another plane monochromatic electromagnetic wave propagating through vaccum described by:

B? =(BIIxi^?BIIyj^)cos(kz??t)

where BIIx = 3.9 X 10-6 T, BIIy = 3.3 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively.

SIIz < 0 and magnitude(SIIz) =/ (does not equal sign) magnitude(Sz)

SIIz < 0 and magnitude(SIIz) = magnitude(Sz)

SIIz > 0 and magnitude(SIIz) =/ (does not equal sign) magnitude(Sz)

SIIz > 0 and magnitude(SIIz) = magnitude(

Answers

Final answer:

The question involves computation of frequency, intensity, Poynting vector and electric field of an electromagnetic wave, and comparison between two such waves. The solutions result in approximately: 10 GHz for frequency, 3.07 x 10^-12 W/m^2 for intensity, 1.3 X 10^-19 W/m^2 for the z-component of Poynting vector, and 1.43 V/m for the electric field. Moreover, the comparison yields that SIIz is less than zero and not equal to Sz in magnitude.

Explanation:

The subject of your question relates to

electromagnetic waves

and their properties such as frequency, intensity, Poynting vector, and the electric field component. These concepts belong to the realm of physics, and more specifically, are topics in the study of electromagnetic theory.

To solve your questions:

  1. The frequency f can be found using the formula: f = c/λ where c is the speed of light in vacuum (~3x10^8 m/s). For λ = 3 cm or 0.03 m, computation yields f ≈ 10^10 Hz or 10 GHz.
  2. The intensity I of an electromagnetic wave in a vacuum can be given by the equation I = 0.5*c*ε0*E^2, where E is the electric field amplitude. To compute I, first, we need to find E which is given by E = c*B, where B is the magnetic field amplitude. Here, B is the square root of (Bx^2 + By^2) resulting in approximately 4.77*10^-6 T. Thus, E ≈ 1.43 V/m and solving for I gives us I ≈ 3.07 x 10^-12 W/m^2.
  3. The z-component of the Poynting vector Sz at a specified point and time is given by Sz = E x H, where H = B/μ0, μ0 represents the permeability of free space. At t = 0, Sz = Ex*Hy - Ey*Hx = Ex*By, resulting in Sz ≈ 1.3 x 10^-19 W/m^2.
  4. The x-component of the electric field at t = 0 Ex≈1.43 V/m.
  5. Finally, comparing Sz of both waves (magnitudes and signs), we find that SIIz < 0 and the magnitude of SIIz does not equal the magnitude of Sz.

Learn more about Electromagnetic Waves here:

brainly.com/question/31660548

#SPJ12

Final answer:

The frequency of the wave is 10 GHz. While we can't expressly calculate the intesity, Sz, and Ex without more information, we can note that if the signs of Bx and By are swapped in a new wave, the Poynting vector would be flipped, hence SIIz would be negative and of equal magnitude to Sz.

Explanation:

An electromagnetic wave propagating through vacuum is described by certain electromagnetic fields which are associated with frequency, intensity, and Poynting vector which indicates the direction of energy flow. These can be calculated using certain formulas derived from wave equations.

Frequency can be acquired from the wavelength (λ) with the formula: f = c/λ, where c is the speed of light in vacuum. Using given λ = 3 cm, we get f = 10^10 Hz or 10 GHz.

The total Intensity (I) can be calculated as the average of the sum of the intensities in the x and y direction, given by: 1/2 ε_0 c E^2, where ε_0 is the permittivity of free-space and E is the electric field amplitude. However, more information might be needed to calculate this value. Similarly, without further information, we cannot calculate the exact values of Sz and Ex.

When comparing Sz and SIIz, if the signs of Bx and By are swapped in a new wave, this would flip the direction of the Poynting vector (since it is related to E × B), hence SIIz < 0 and its magnitude would still equal to Sz because the magnitudes of Bx and By do not change.

Learn more about Electromagnetic wave properties here:

brainly.com/question/27219042

#SPJ11

Match each planet to an accurate characteristic

Answers

Answer:

venus - 2

earth - 3

mars - 4

mercury - 1

A train is traveling at 30.0 m/sm/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 HzHz. The speed of sound in air should be taken as 344 m/sm/s.A. What frequency fapproach is heard by a passenger on a train moving at a speed of 18.0 m/s relative to the ground in a direction opposite to the first train and approaching it?B. What frequency frecede is heard by a passenger on a train moving at a speed of 18.0 m/s relative to the ground in a direction opposite to the first train and receding from it?

Answers

Answer

given,

speed of sound = 344 m/s

speed of train = 30 m/s

frequency emitted by the train = 262 Hz

   Doppler's effect

    f_L = (v + v_L)/(v + v_s)\ f_S

f_L is the frequency of listener

f_S is the frequency of the source of the sound

v is the speed of the sound

v_L is the speed of listener.

v_S is the speed of the source

a) Speed of the passenger in another train , v = 18 m/s

   another train is moving in opposite direction and approaching

   v_L is positive as the listener is moving forward.

    v_S is negative at the source is moving toward the listener.

      f_L = (344 + 18)/(344 - 30)* 262

     f_L = 302\ Hz

b) Speed of the passenger in another train , v = 18 m/s

   another train is moving in opposite direction and receding

    v_L is negative as the listener is moving away from source.

    v_S is positive at the source is moving away the listener.

      f_L = (344 - 18)/(344 + 30)* 262

     f_L = 228.37\ Hz

1. The resistance of an electric device is 40,000 microhms. Convert that measurement to ohms2. When an electric soldering iron is used in a 110 V circuit, the current flowing through the iron is
2 A. What is the resistance of the iron?
3. A current of 0.2 A flows through an electric bell having a resistance of 65 ohms. What must be
the applied voltage in the circuit?

Answers

Answer:

(1) 0.04 ohms (2) 55 ohms (3) 13 volt

Explanation:

(1) The resistance of an electric device is 40,000 microhms.

We need to convert it into ohms.

1\ \mu \Omega =10^(-6)\ \Omega

To covert 40,000 microhms to ohms, multiply 40,000 and 10⁻⁶ as follows :

40000 \ \mu \Omega =40000 * 10^(-6)\ \Omega\n\n=0.04\ \Omega

(2) Voltage used, V = 110 V

Current, I = 2 A

We need to find the resistance of the iron. Using Ohms law to find it as follows :

V = IR, where R is resistance

R=(V)/(I)\n\nR=(110)/(2)\n\nR=55\ \Omega

(3) Current, I = 0.2 A

Resistance, R = 65 ohms

We need to find the applied voltage in the circuit. Using Ohms law to find it as follows :

V=IR

V = 0.2 × 65

V = 13 volt

Answer:

1. 0.04 Ohms

2. 55 Ohms

3. 13 Volts

Explanation:

Penn Foster

A poorly constructed room is suffering from a pipe leakage problem. The leaked pipes are continuously flooding the 90-m2 room such that the water level in the room increases at a steady rate of 1.2 cm/hr (a) How much water in L/min should be pumped out of the room to keep the water level cnstat (b) How much water in L/min should be pumped out of the room to reduce the water level by 4 cm/hr?

Answers

Answer:

(a): should be pumped out of the room 18 L/min to keep the water level constant.

(b): should be pumped out of the room 78 L/min to reduce the water level by 4 cm/hr.

Explanation:

S= 90 m²

rate= 1.2 cm/hr = 0.012 m/hr = 0.0002 m/min

Water leak= S*rate= 90 m² * 0.0002 m/min

Water leak= 0.018 m³/min * 1000 L/m³

Water leak= 18 L/min   (a) Water should be pumped out to keep the level constant.

By the rule of 3:

1.2 cm/hr ------------- 18 L/min

(4+1.2) cm/hr --------  x= 78 L/min  (b) Water should be pumped out to reduce the level by 4 cm/hr.

In an evironmental system of subsystem, the mass balance equation is:__________.

Answers

Answer:

Explanation:

The mass balance is an application of conservation of mass, to the analysis of physical system. This is given in an equation form as

Input = Output + Accumulation

The conservation law that is used in this analysis of the system actually depends on the context of the problem. Nevertheless, they all revolve around conservation of mass. By conservation of mass, I mean that the fact that matter cannot disappear or be created spontaneously.