Based on your knowledge of waves and fider optic cables, which type of wave would be found in a fiber optic cable? Explain how you got the answer and i will mark brainliest!!!! Thank you sooooo much!
Based on your knowledge of waves and fider optic cables, - 1

Answers

Answer 1
Answer:

The answer is; Transverse waves

Fiber optic cables transmit information using monochromatic light pulses. All electromagnetic waves (light included) are transverse waves.  This means that the particles move perpendicular to the direction of the wave. This is unlike sound waves that are longitudinal waves (particles move parallel to the direction of the wave).


Answer 2
Answer:

Final answer:

Fiber optic cables transmit data using light waves, which are essentially electromagnetic waves. The wave characteristics of light, especially total internal reflection, interference, and diffraction, facilitate effective data transmissions through these fibers. Factors like high bandwidth, low signal loss, and reduced crosstalk further contribute to their advantage over traditional cables.

Explanation:

Based on the principles of optics, electromagnetic waves, particularly light waves, are what you could find in a fiber optic cable. Fiber optic cables work by transmitting data as pulses of light through strands of fiber made from glass or plastic. This process utilizes the characteristic phenomenon of total internal reflection. When light rays enter the fiber, they bounce off the walls of the fiber cable, undergoing multiple total internal reflections, which ensures that no light escapes the fiber and all signals are conveyed effectively.

Light's wave characteristics are crucial in enabling this functionality. The wave nature of light helps explain properties such as interference and diffraction, essential for the transmission of data in fiber optic networks. These principles are especially relevant when light interacts with small objects such as the core/cladding of the fiber, a subject area often referred to as wave or physical optics.

Another advantage is the high bandwidth of fiber optics, made possible because lasers can emit light with characteristics that allow far more data transmission than electric signals on a single conductor. Meanwhile, properties like low loss and reduced crosstalk enhance the functional superiority of fiber optic cables over traditional copper cable systems.

Learn more about Fiber Optic Cables here:

brainly.com/question/30267683

#SPJ3


Related Questions

Pls answer this question
To what volume (in mL) would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN?
What term is used to describe the formation of ions in an aqueous solution from a molecular compound
Draw an arrow-pushing mechanism for the elimination reaction between NaOH in ethanol and each of the following haloalkanes: (E1/E2)(i) 1-bromobutane;(ii) 2-bromo-2-methylpentane.
An imaginary line dividing the earth's surface into two hemisphere the northern and southern hemisphere, it is locatedat 0⁰, which of the following imaginary lines is being described? a.equator b.latitude c.longitude d.prime meridian​

Hydrochloric acid reacts with sodium hydroxide to produce sodium chloride and water. If 20.6 g of sodium hydroxide reacts with an excess of hydrochloric acid, how many grams of sodium chloride are produced? HCl + NaOH → NaCl + H2O

Answers

Answer:

30.1 g NaCl

Explanation:

Your first conversion is converting grams NaOH to moles of NaOH using its molar mass (39.997 g/mol). Then, use the mole ratio of 1 mol NaCl for every 1 mol NaOH to get to moles of NaCl. Then finally multiply by the molar mass of NaCl (58.44 g/mol) to get grams of NaCl.

20.6 g NaOH • (1 mol NaOH / 39.997 g NaOH) • (1 mol NaCl / 1 mol NaOH) • (58.44 g NaCl / 1 mol NaCl) = 30.1 g NaCl

For the reaction ? NO + ? O2 → ? NO2 , what is the maximum amount of NO2 which could be formed from 16.42 mol of NO and 14.47 mol of O2? Answer in units of g. 003 1.0 points For the reaction ? C6H6 + ? O2 → ? CO2 + ? H2O 37.3 grams of C6H6 are allowed to react with 126.1 grams of O2. How much CO2 will be produced by this reaction? Answer in units of gram

Answers

Answer:

1a. The balanced equation is given below:

2NO + O2 → 2NO2

The coefficients are 2, 1, 2

1b. 755.32g of NO2

2a. The balanced equation is given below:

2C6H6 + 15O2 → 12CO2 + 6H2O

The coefficients are 2, 15, 12, 6

2b. 126.25g of CO2

Explanation:

1a. Step 1:

Equation for the reaction. This is given below:

NO + O2 → NO2

1a. Step 2:

Balancing the equation. This is illustrated below:

NO + O2 → NO2

There are 2 atoms of O on the right side and 3 atoms on the left side. It can be balance by putting 2 in front of NO and 2 in front of NO2 as shown below:

2NO + O2 → 2NO2

The equation is balanced.

The coefficients are 2, 1, 2

1b. Step 1:

Determination of the limiting reactant. This is illustrated below:

2NO + O2 → 2NO2

From the balanced equation above, 2 moles of NO required 1 mole of O2.

Therefore, 16.42 moles of NO will require = 16.42/2 = 8.21 moles of O2.

From the calculations made above, there are leftover for O2 as 8.21 moles out of 14.47 moles reacted. Therefore, NO is the limiting reactant and O2 is the excess reactant.

1b. Step 2:

Determination of the maximum amount of NO2 produced. This is illustrated below:

2NO + O2 → 2NO2

From the balanced equation above, 2 moles of NO produced 2 moles of NO2.

Therefore, 16.42 moles of NO will also produce 16.42 moles of NO2.

1b. Step 3:

Conversion of 16.42 moles of NO2 to grams. This is illustrated below:

Molar Mass of NO2 = 14 + (2x16) = 14 + 32 = 46g/mol

Mole of NO2 = 16.42 moles

Mass of NO2 =?

Mass = number of mole x molar Mass

Mass of NO2 = 16.42 x 46

Mass of NO2 = 755.32g

Therefore, the maximum amount of NO2 produced is 755.32g

2a. Step 1:

The equation for the reaction.

C6H6 + O2 → CO2 + H2O

2a. Step 2:

Balancing the equation:

C6H6 + O2 → CO2 + H2O

There are 6 atoms of C on the left side and 1 atom on the right side. It can be balance by 6 in front of CO2 as shown below:

C6H6 + O2 → 6CO2 + H2O

There are 6 atoms of H on the left side and 2 atoms on the right. It can be balance by putting 3 in front of H2O as shown below:

C6H6 + O2 → 6CO2 + 3H2O

There are a total of 15 atoms of O on the right side and 2 atoms on the left. It can be balance by putting 15/2 in front of O2 as shown below:

C6H6 + 15/2O2 → 6CO2 + 3H2O

Multiply through by 2 to clear the fraction.

2C6H6 + 15O2 → 12CO2 + 6H2O

Now, the equation is balanced.

The coefficients are 2, 15, 12, 6

2b. Step 1:

Determination of the mass of C6H6 and O2 that reacted from the balanced equation. This is illustrated below:

2C6H6 + 15O2 → 12CO2 + 6H2O

Molar Mass of C6H6 = (12x6) + (6x1) = 72 + 6 = 78g/mol

Mass of C6H6 from the balanced equation = 2 x 78 = 156g

Molar Mass of O2 = 16x2 = 32g/mol

Mass of O2 from the balanced equation = 15 x 32 = 480g

2b. Step 2:

Determination of the limiting reactant. This is illustrated below:

From the balanced equation above,

156g of C6H6 required 480g of O2.

Therefore, 37.3g of C6H6 will require = (37.3x480)/156 = 114.77g of O2.

From the calculations made above, there are leftover for O2 as 114.77g out of 126.1g reacted. Therefore, O2 is the excess reactant and C6H6 is the limiting reactant.

2b. Step 3:

Determination of mass of CO2 produced from the balanced equation. This is illustrated belowb

2C6H6 + 15O2 → 12CO2 + 6H2O

Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol

Mass of CO2 from the balanced equation = 12 x 44 = 528g

2b. Step 4:

Determination of the mass of CO2 produced by reacting 37.3g of C6H6 and 126.1g O2. This is illustrated below:

From the balanced equation above,

156g of C6H6 produced 528g of CO2.

Therefore, 37.3g of C6H6 will produce = (37.3x528)/156 = 126.25g of CO2

The standard free energy change for a reaction in an electrolytic cell is always:_________ a. Positive
b. Negative
c. Zero
d. Impossible to determine

Answers

Answer: The standard free energy change for a reaction in an electrolytic cell is always positive.

Explanation:

Electrolytic cells use electric currents to drive a non-spontaneous reaction forward.

Relation of standard free energy change and emf of cell

\Delta G^o=-nFE^0_(cell)

where,

\Delta G^o = standard free energy change

  n= no of electrons gained or lost

F= faraday's constant

E^0_(cell) = standard emf

E^0_(cell)   = standard emf = -ve  , for non spontaneous reaction

Thus  \Delta G^o=(-ve)(-ve)=+ve

Thus standard free energy change for a reaction in an electrolytic cell is always positive.

Balance the chemical equation given below, and determine the number of moles of iodine that reacts with 10.0 g of aluminum._____ Al(s) + _____ I2(s) → _____ Al2I6(s)

Answers

Answer:

1. 2Al + 3I2 —> Al2I6

2. 0.555mol of I2

Explanation:

1. Al + I2 —> Al2I6

Observing the above equation, there are 2 atoms of Al on the right side and 1 on the left side. To balance it, put 2 in front of Al as shown below:

2Al + I2 —>Al2I6

Also, there are 6 atoms of I on the right side and 2 on the left side. To balance it, put 3 in front I2 as shown below:

2Al + 3I2 —>Al2I6

2. Molar Mass of Al = 27g/mol

Mass of Al = 10g

n = Mass /Molar Mass

n = 10/27 = 0.37mol

From the equation,

2moles of Al reacted with 3 moles of I2.

Therefore, 0.37mol of Al will react with = (0.37 x 3)/2 = 0.555mol of I2

The balanced chemical equation is:

2 Al(s) + 3 I₂(s) → Al₂I₆(s)

0.557 moles of iodine react with 10.0 g of aluminum.

Let's consider the following unbalanced equation.

Al(s) + I₂(s) → Al₂I₆(s)

We will balance it using the trial and error method. We can get the balanced equation by multiplying Al by 2 (balance Al atoms) and I₂ by 3 (balance I atoms).

2 Al(s) + 3 I₂(s) → Al₂I₆(s)

The molar mass of Al is 26.98 g/mol. The moles corresponding to 10.0 g of Al are:

10.0 g * (1mol)/(26.98g) = 0.371 mol

The molar ratio of Al to I₂ is 2:3. The moles of I₂ that react with 0.371 moles of Al are:

0.371 molAl * (3molI_2)/(2molAl) = 0.557 mol I_2

The balanced chemical equation is:

2 Al(s) + 3 I₂(s) → Al₂I₆(s)

0.557 moles of iodine react with 10.0 g of aluminum.

You can learn more about stoichiometry here: brainly.com/question/9743981

Which choice(s) include(s) d-orbital contribution in the hybridization scheme: pcl3, no3─, i3─, h2se ?

Answers

Among all three PCl₃, NO₃⁻ , I₃⁻, H₂Se only I₃⁻ will involve participation of d-orbitals in hybridization as bonding in I₃⁻ will include, s, p and d orbital as shown in the image attached. there will be sp³d hybridization, there will be presence of three lone pairs and 2 bonds as

I⁻ has 8 valence electrons and 2 neighbours atoms which will need one electron each to satisfy their valency.

so the number of electrons on central atom will be:

8-1-1=6

That 6 electrons will make 6/2 =3 lone pairs.

Assuming binding is fast relative to subsequent catalytic steps, what relative effect does substitute the various active site residues have on catalysis versus substrate-binding? The various substitutions affecta. substrate-binding more than catalytic turnover.
b. catalytic turnover more than substrate binding.
c. substrate binding, but not catalytic turnover.
d. catalytic turnover, but not substrate binding.

Answers

Answer:

Explanation:

The various substitutions affect catalytic turnover more than substrate binding.