How many nanoseconds are in one hour? How do you write the following in scientific notation?2,560,000m

Answers

Answer 1
Answer:

Answer:

3.6 × 10¹² nanoseconds

Explanation:

Hour is the unit of time. Seconds is the SI unit of time.

Hour and seconds are related as:

1 hour = 60 minutes

1 minute = 60 seconds

So,

1 hour = 60 ×60 seconds = 3600 seconds

Thus,

3600  seconds are in one hour

Also,

1 sec = 10⁹ nanoseconds

Thus,

3600 sec = 3600 × 10⁹ nanoseconds = 3.6 × 10¹² nanoseconds

Thus,

3.6 × 10¹² nanoseconds are in one hour.


Related Questions

Enter your answer in the provided box. In water conservation, chemists spread a thin film of certain inert materials over the surface of water to cut down on the rate of evaporation of water in reservoirs. This technique was pioneered by Benjamin Franklin three centuries ago. Franklin found that 0.10 mL of oil could spread over the surface of water of about 32.0 m2 in area. Assuming that oil forms a monolayer (that is, a layer that is only one molecule thick) estimate the length of each oil molecule in nanometers. Assume that oil molecules are roughly cubic. (1 nm = 1 × 10−9 m)
Is the magnet in a compass a permanent magnet or an electromagnet?
One of the primary visible emissions from a distant planet occurs at 425 nm. Calculate the energy of a mole of photons of this emission.]
A forest fire sends carbon monoxide and ash into the air. This is an example of the__1__ affecting the__2___ .1. A. HydrosphereB LithosphereC. Atmosphere2 A LithosphereB AtmosphereC Biosphere
A^^\-> points in the -x direction with a magnitude of 21. What is the y component of A^^\->

As a science project, you drop a watermelon off the top of the Empire State Building. 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a constant speed of 30 m/s. A) How much time passes before the watermelon has the same velocity? B) How fast is the watermelon going when it passes Superman?C) How fast is the watermelon traveling when it hits the ground?

Answers

Answer:

3.06 seconds time passes before the watermelon has the same velocity

watermelon going at speed 59.9 m/s

watermelon traveling when it hits the ground at speed is 79.19 m/s

Explanation:

given data

height = 320 m

speed = 30 m/s

to find out

How much time passes before the watermelon has the same velocity and How fast is the watermelon going and How fast is the watermelon traveling

solution

we will use here equation of motion that is

v = u + at    ....................1

here v is velocity 30 m/s and u is initial speed i.e zero and a is acceleration i.e 9.8 m/s²

put the value and find time t

30 = 0 + 9.8 (t)

t = 3.06 s

so 3.06 seconds time passes before the watermelon has the same velocity

and

we know superman cover distance is = velocity × time

so distance = 30 × t

and distance formula for watermelon is

distance = ut + 0.5×a×t²    .............2

here u is initial speed i.e 0 and a is acceleration i.e 9.8 m/s² and h is 30 × t

30 × t = 0 + 0.5×9.8×t²

t = 6.12 s

so  by equation 1

v = u + at

v = 0 + 9.8 ( 6.12)

v = 59.9 m/s

so watermelon going at speed 59.9 m/s

and

watermelon traveling speed formula is by equation of motion

v² - u² = 2as      ......................3

here v is speed and u is initial speed i.e 0 and a is acceleration i.e 9.8 m/s² and s is distance i.e 320 m

v² - 0 = 2(9.8) 320

v = 79.19 m/s

so watermelon traveling when it hits the ground at speed is 79.19 m/s

A proton is moving horizontally halfway between two parallel plates that are separated by 0.60 cm. The electric field due to the plates has magnitude 720,000 N/C between the plates away from the edges. If the plates are 5.6 cm long, find the minimum speed of the proton if it just misses the lower plate as it emerges from the field.

Answers

Answer:

v = 4,244,699 m/s = (4.245 × 10⁶) m/s

Explanation:

The electric force on the proton is given by

F = qE

where q = charge on the proton = (1.602 × 10⁻¹⁹) C

E = Electric field = 720,000 N/C

F = (1.602 × 10⁻¹⁹ × 720000)

F = (1.153 × 10⁻¹³) N

But this force will accelerate the proton in this magnetic field in a form of trajectory motion.

We can obtain the acceleration using Newton's first law of motion relation

F = ma

m = mass of a proton = (1.673 × 10⁻²⁷) kg

a = (F/m)

a = (1.153 × 10⁻¹³)/(1.673 × 10⁻²⁷)

a = 68,944,411,237,298 m/s²

a = (6.894 × 10¹³) m/s²

This acceleration directs the proton from the positive plate to the negative plate, covering a distance of y = 0.006 m (the distance between the plates)

Using Equations of motion, we can obtain the time taken for the proton to move from the rest at the positive plate to the negative one.

u = initial velocity of the proton = 0 m/s

y = vertical distance covered by the proton = 0.006 m

a = acceleration of the proton in this direction = (6.894 × 10¹³) m/s²

t = time taken for the proton to complete this distance = ?

y = ut + (1/2) at²

0.006 = 0 + [(1/2)×(6.894 × 10¹³)×t²]

0.006 = (3.447 × 10¹³) t²

t² = (0.006)/(3.447 × 10¹³)

t² = 1.741 × 10⁻¹⁶

t = (1.32 × 10⁻⁸) s

Then we can then calculate the minimum speed to navigate the entire length of the plates without hitting the plates.

v = ?

x = 0.056 n

t = (1.32 × 10⁻⁸)

v = (x/t)

v = (0.056)/(1.32 × 10⁻⁸)

v = 4,244,699 m/s = (4.245 × 10⁶) m/s

Hope this Helps!!!

Answer:

v = 9.09×10⁵m/s

Explanation:

Given

d = the distance between plates = 0.6cm = 0.006

E = Electric field strength = 720000N/C

m =mass of the proton = 1.67 ×10-²⁷ kg

The

Electric potential energy of the field is converted into the the kinetic energy of the proton.

So

qV = 1/2mv²

But V = Ed

So q(Ed) = 1/2mv²

v² = 2qEd/m

v = √(2qEd/m)

v = √(2×1.6×10-¹⁹×720000×0.006/1.67×10-²⁷)

v = 9.09×10⁵m/s

Ted Clubber Lang. A hook in boxing primarily involves horizontal flexion of the shoulder while maintaining a constant angle at the elbow. During this punch, the horizontal flexor muscles of the shoulder contract and shorten at an average speed of 75 cm/s. They move through an arc length of 5 cm during the hook, while the first moves through an arc length of 100 cm. What is the average speed of the first during the hook?

Answers

Answer:

15 m/s or 1500 cm/s

Explanation:

Given that

Speed of the shoulder, v(h) = 75 cm/s = 0.75 m/s

Distance moved during the hook, d(h) = 5 cm = 0.05 m

Distance moved by the fist, d(f) = 100 cm = 1 m

Average speed of the fist during the hook, v(f) = ? cm/s = m/s

This can be solved by a very simple relation.

d(f) / d(h) = v(f) / v(h)

v(f) = [d(f) * v(h)] / d(h)

v(f) = (1 * 0.75) / 0.05

v(f) = 0.75 / 0.05

v(f) = 15 m/s

Therefore, the average speed of the fist during the hook is 15 m/s or 1500 cm/s

Suppose that an object undergoes simple harmonic motion, and its displacement has an amplitude A = 15.0 cm and a frequency f = 11.0 cycles/s (Hz). What is the maximum speed ( v ) of the object?A. 165 m/s
B. 1.65 m/s
C. 10.4 m/s
D. 1040 m/s

Answers

Answer:

Maximum speed ( v ) = 10.4 m/s (Approx)

Explanation:

Given:

Amplitude A = 15.0 cm = 0.15 m

Frequency f = 11.0 cycles/s (Hz)

Find:

Maximum speed ( v )

Computation:

Angular frequency = 2πf

Angular frequency = 2π(11)

Angular frequency = 69.14

Maximum speed ( v ) = WA

Maximum speed ( v ) = 69.14 x 0.15

Maximum speed ( v ) = 10.371

Maximum speed ( v ) = 10.4 m/s (Approx)

A bowling ball of mass 3 kg is dropped from the top of a tall building. It safely lands on the ground 3.5 seconds later. Neglecting air friction, what is the height of the building in meters? (Give the answer without a unit and round it to the nearest whole number)

Answers

The height of the building is 60 m.

calculation of building height:

The velocity of the ball should be provided by

v = u + gt

here,

u is the initial velocity of the ball = 0

v = 0 + 9.8 x 3.5

v = 34.3 m/s

Now

When the ball hits the ground, energy is conserved;

mgh = ¹/₂mv²

gh = ¹/₂v²

h = (0.5 v²) / g

h = (0.5 x 34.3²) / (9.8)

h = 60.025 m

h = 60 m

Learn more about friction here: brainly.com/question/14455351

Answer:

The height of the building is 60 m.

Explanation:

Given;

mass of the mass of the ball, m = 3 kg

time of motion, t = 3.5 s

The velocity of the ball is given by;

v = u + gt

where;

u is the initial velocity of the ball = 0

v = 0 + 9.8 x 3.5

v = 34.3 m/s

When the ball hits the ground, energy is conserved;

mgh = ¹/₂mv²

gh = ¹/₂v²

h = (0.5 v²) / g

h = (0.5 x 34.3²) / (9.8)

h = 60.025 m

h = 60 m

Therefore, the height of the building is 60 m.

A 4 kg bowling ball accelerates 1 m/s2. what is the net force on the ball?

Answers

Answer:4N

Explanation:

mass=4kg

Acceleration=1m/s^2

Force=mass x acceleration

Force=4 x 1

Force=4N