A person is making homemade ice cream. She exerts a force of magnitude 26 N on the free end of the crank handle on the ice-cream maker, and this end moves on a circular path of radius 0.26 m. The force is always applied parallel to the motion of the handle. If the handle is turned once every 2.0 s, what is the average power being expended?

Answers

Answer 1
Answer:

Answer:

P = 31.83 W

Explanation:

Our data are,

Magnitude of the force F = 26 N

Radius of the circular path r = 0.26 m

The angle between force and handle \theta = 0°

Time t = 2 s

We know that the formula to find the velocity is given by

Velocity v = (2\pi r)/(t)

v= (2\pi r)/(t)

v=(2 \pi 0.26)/(2)

v= 0.8168m/s

We know also that the formula to find the power is given by,

P = F*v

P = (26)(0.8168)

P = 31.83 W


Related Questions

A centrifuge is a common laboratory instrument that separates components of differing densities in solution. This is accomplished by spinning a sample around in a circle with a large angular speed. Suppose that after a centrifuge in a medical laboratory is turned off, it continues to rotate with a constant angular deceleration for 10.0s before coming to rest.Part AIf its initial angular speed was 3890rpm , what is the magnitude of its angular deceleration? (|?| in revs/s^2 )Part BHow many revolutions did the centrifuge complete after being turned off?
What is the wavelength of the electromagnetic radiation needed to eject electrons from a metal?
What is the velocity at discharge if the nozzle of a hose measures 68 psi? 100.25 ft./sec 10.25 ft./sec 125.2 ft./sec 11.93 ft./sec
Tripling the displacement from equilibrium of an object in simple harmonic motion will bring about a change in the magnitude of the object's acceleration by what factor?
Vaporized gases and released dust form a bright cloud called a(n) ____ around the solid part of a comet.

the period of the satellite is exact 42.391 hours, the earth's mass is 5.98 kg and the radius of th earth is 3958.8 miles, what is the distance of the satellite from the surface of the earth in miles?

Answers

Answer:

As the mass is not written well, i will use the equation in terms of the gravitational acceleration:

The equation for the period of a satellite is:

T = 2*pi*\sqrt{(r^3)/(g*R^2) }

We want to find r, so isolating r we get:

r = \sqrt[3]{x ((T)/(2*pi) )^2*g*R^2}

Where:

T = period.

r = radius of the satellite.

R = radius of the planet.

g = gravitational acceleration of the planet.

pi = 3.14159...

g = 78999.64 mi/h^2 (value of a table)

T = 42.391 h.

R = 3958.8 miles

We can replace those values in the equation and get:

r = \sqrt[3]{ ((42.391)/(2*3.14159) )^2*78999.64*(3958.8)^2} = 38,339.5 mi

Now this value is measured from the center of the Earth, then the altitude of the satellite measured from the surface of the Earth will be:

H = r - R = 38,339.1mi - 3958.8mi =  34,380.3 mi

A string that passes over a pulley has a 0.341 kg mass attached to one end and a 0.625 kg mass attached to the other end. The pulley, which is a disk of radius 9.00 cm , has friction in its axle.What is the magnitude of the frictional torque that must be exerted by the axle if the system is to be in static equilibrium? (Answer should be in N m)

Answers

Answer:

The frictional torque is \tau  = 0.2505 \ N \cdot m

Explanation:

From the question we are told that

   The mass attached to one end the string is m_1 =  0.341 \ kg

   The mass attached to the other end of the string is  m_2 =  0.625 \ kg

    The radius of the disk is  r = 9.00 \ cm  = 0.09 \ m

At equilibrium the tension on the string due to the first mass is mathematically represented as

      T_1 =  m_1 *  g

substituting values

      T_1 =  0.341 * 9.8

      T_1 =  3.342 \ N

At equilibrium the tension on the string due to the  mass is mathematically represented as

      T_2 =  m_2 *  g

     T_2 = 0.625 * 9.8

      T_2 = 6.125 \ N

The  frictional torque that must be exerted is mathematically represented as

      \tau  =  (T_2 * r ) - (T_1 * r )

substituting values  

     \tau  =  ( 6.125 * 0.09 ) - (3.342  * 0.09 )

     \tau  = 0.2505 \ N \cdot m

Answer:here to earn points

Explanation:

A nearsighted person has a far point of 40cm. What power spectacle lens is needed if the lens is 2cm from the eye

Answers

Answer:

The value is p =   - 2.63 \ Diopters

Explanation:

From the question we are told that  

      The value of the far point is  a =  40 \ cm  =  0.4 \  m

      The distance of the lens to the eye is  b =  2 \ cm = 0.02

Generally

        1 Diopter = >  1 m^(-1)

Generally the power spectacle lens needed is mathematically represented as

           p = (1)/(d_o )  + (1)/(d_i)

Here d_o is the object distance which for a near sighted person is d_o =  \infty

And  d_i is the image distance which is evaluated as

        d_i =  b - a

=>     d_i =  0.02 - 0.4

=>     d_i = -0.38 \  m

So

         p = (1)/(\infty )  + (1)/(-0.38)

=>      p = 0   - 2.63

=>      p =   - 2.63 \ Diopters

A flat disk of radius 0.50 m is oriented so that the plane of the disk makes an angle of 30 degrees with a uniform electric field. If the field strength is 713.0 N/C find the electric Tiux through the surface A) 560 Nm2/C B) 620 N·m2/C C) 160 n N.m2/C D) 280 N.m2/C

Answers

Answer:

electric flux is 280  Nm²/C  

so correct option is D 280  Nm²/C

Explanation:

radius r = 0.50 m

angle = 30 degree

field strength = 713 N/C

to find out

the electric flux through the surface

solution

we find here electric flux by given formula that is

electric flux = field strength × area× cos∅   .......1

here area = πr² = π(0.50)²

put here all value in equation  1

electric flux = field strength × area× cos∅  

electric flux = 713 × π(0.50)² × cos60

we consider the cosine of the angle between the direction of the field and the normal to the surface of the disk

so we use cos60

electric flux = 280  Nm²/C

so correct option is D 280  Nm²/C

What is the magnitude of a vector that has the following components: x = 32 m y = -59 m

Answers

Answer:

Explanation:

Since the x and y components are given

The vectors Magnitude = √32²+(-59)²

=67.12m

Define reflection.what are the two types of reflection

Answers

Answer:

The reflection of light can be roughly categorized into two types of reflection: specular reflection is defined as light reflected from a smooth surface at a definite angle, and diffuse reflection, which is produced by rough surfaces that tend to reflect light in all directions

mark as brainliest plz

Explanation:

Final answer:

Reflection is the process of light bouncing off a surface and changing its direction. There are two types of reflection: specular reflection and diffuse reflection.

Explanation:

Reflection is the process of light bouncing off a surface and changing its direction. There are two types of reflection: specular reflection and diffuse reflection.

Specular reflection occurs when light reflects off a smooth surface, such as a mirror, at a specific angle.

Diffuse reflection occurs when light reflects off a rough surface, such as paper or clothing, and scatters in many different directions.

Learn more about reflection here:

brainly.com/question/15487308

#SPJ12