Link AB is to be made of a steel for which the ultimate normal stress is 65 ksi. Determine the cross-sectional area of AB for which the factor of safety will be 3.20. Assume that the link will be adequately reinforced around the pins at A and B.

Answers

Answer 1
Answer:

Explanation:

ddddjidirjejekejwjwkw


Related Questions

The specific volume of mercury is .00007 m^3/Kg. What is its density in lbm/ft^3?
In a home, air infiltrates from the outside through cracks around doors and windows. Consider a residence where the total length of cracks is 62 m and the total internal volume is 210 m3 . Due to the wind, 9.4 x 10-5 kg/s of air enters per meter of crack and exits up a chimney. Assume air temperature is the same inside and out and air density is constant at 1.186 kg/m3 . If windows and doors are not opened or closed, estimate the time required for one complete air change in the building.
"Given a nodal delay of 84.1ms when there is no traffic on the network (i.e. usage = 0%), what is the effective delay when network usage = 39.3% ? (Give answer is miliseconds, rounded to one decimal place, without units. So for an answer of 0.10423 seconds you would enter "104.2" without the qu"
Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. The gas-turbine cycle of a combined gas–steam power plant has a pressure ratio of 8. Air enters the compressor at 290 K and the turbine at 1400 K. The combustion gases leaving the gas turbine are used to heat the steam at 15 MPa to 450°C in a heat exchanger. The combustion gases leave the heat exchanger at 247°C. Steam expands in a high-pressure turbine to a pressure of 3 MPa and is reheated in the combustion chamber to 500°C before it expands in a low-pressure turbine to 10 kPa. The mass flow rate of steam is 17 kg/s. Assume isentropic efficiencies of 100 percent for the pump, 85 percent for the compressor, and 90 percent for the gas and steam turbines.Determine the rate of total heat input.
A power plant burns natural gas to supply heat to a heat engine which rejects heat to the adjacent river. The power plant produces 800 MW of electrical power and has a thermal efficiency of 38%. Determine the heat transfer rates from the natural gas and to the river, in MW.

At full load, a commercially available 100hp, three phase induction motor operates at an efficiency of 97% and a power factor of 0.88 lag. The motor is supplied from a three-phase outlet with a line voltage rating of 208V.a. What is the magnitude of the line current drawn from the 208 V outlet? (1 hp = 746 W.) b. Calculate the reactive power supplied to the motor.

Answers

Answer:

I = Line Current = 242.58 A

Q = Reactive Power = 41.5 kVAr

Explanation:

Firstly, converting 100 hp to kW.

Since, 1 hp = 0.746 kW,

100 hp = 0.746 kW x 100

100 hp = 74.6 kW

The power of a three phase induction motor can be given as:

P_(in)  = √(3) VI Cos\alpha\n

where,

P in = Input Power required by the motor

V = Line Voltage

I = Line Current

Cosα = Power Factor

Now, calculating Pin:

efficiency = \frac{{P_(out)} }{P_(in) }\n0.97 = (74.6)/(P_(in) ) \nP_(in) = (74.6)/(0.97)\n  P_(in) = 76.9 kW

a) Calculating the line current:

P_(in) = √(3)VICos\alpha   \n76.9 * 1000= √(3)*208*I*0.88\nI = (76.9*1000)/(√(3)*208*0.88 )\nI =   242.58 A

b) Calculating Reactive Power:

The reactive power can be calculated as:

Q = P tanα

where,

Q = Reactive power

P = Active Power

α = power factor angle

Since,

Cos\alpha =0.88\n\alpha =Cos^(-1)(0.88)\n\alpha=28.36

Therefore,

Q = 76.9 * tan (28.36)\nQ = 76.9 * (0.5397)\nQ = 41. 5 kVAr

The barrel of a bicycle tire pump becomes quite warm during use. Explain the mechanisms responsible for the temperature increase.

Answers

Answer:

The air heats up when being compressed and transefers heat to the barrel.

Explanation:

When a gas is compressed it raises in temperature. Assuming that the compression happens fast and is done before a significant amount of heat can be transferred to the barrel, we could say it is an adiabatic compression. This isn't exactly true, it is an approximation.

In an adiabatic transformation:

P^(1-k) * T^k = constant

For air k = 1.4

SO

P0^(-0.4) * T0^(1.4) = P1^(-0.4) * T1^(1.4)

T1^(1.4) = (P1^(0.4) * T0^(1.4))/(P0^(0.4))

T1^(1.4) = (P1)/(P0)^(0.4) * T0^(1.4)

T1 = T0 * (P1)/(P0)^(0.4/1.4)

T1 = T0 * (P1)/(P0)^(0.28)

SInce it is compressing, the fraction P1/P0 will always be greater than one, and raised to a positive fraction it will always yield a number greater than one, so the final temperature will be greater than the initial temperature.

After it was compressed the hot air will exchange heat with the barrel heating it up.

A cylindrical specimen of cold-worked steel has a Brinell hardness of 250.(a) Estimate its ductility in percent elongation.(b) If the specimen remained cylindrical during deformation and its original radius was 5 mm (0.20 in.), determine its radius after deformation.

Answers

Answer:

A) Ductility = 11% EL

B) Radius after deformation = 4.27 mm

Explanation:

A) From equations in steel test,

Tensile Strength (Ts) = 3.45 x HB

Where HB is brinell hardness;

Thus, Ts = 3.45 x 250 = 862MPa

From image 1 attached below, for steel at Tensile strength of 862 MPa, %CW = 27%.

Also, from image 2,at CW of 27%,

Ductility is approximately, 11% EL

B) Now we know that formula for %CW is;

%CW = (Ao - Ad)/(Ao)

Where Ao is area with initial radius and Ad is area deformation.

Thus;

%CW = [[π(ro)² - π(rd)²] /π(ro)²] x 100

%CW = [1 - (rd)²/(ro)²]

1 - (%CW/100) = (rd)²/(ro)²

So;

(rd)²[1 - (%CW/100)] = (ro)²

So putting the values as gotten initially ;

(ro)² = 5²([1 - (27/100)]

(ro)² = 25 - 6.75

(ro) ² = 18.25

ro = √18.25

So ro = 4.27 mm

B. Suppose R1 is a fuse which burns out due to a sudden surge of current, thus, it essentially becomes an open switch. How do the currents change after this?

Answers

Answer:

The currents becomes 0

Explanation:

when the fuse burns out due to a sudden surge of current and becomes an open switch (with a resistance of Infinity ∞) this automatically reduces the currents through it to zero

1. Sewage-treatment plant, a large concrete tank initially contains 440,000 liters liquid and 10,000 kg fine suspended solids. To flush this material out of the tank, water is pumped into the vessel at a rate of 40,000 liter/h. Liquid containing solids leaves at the same rate. Estimate the concentration of suspended solids in the tank at the end of 5 h.

Answers

Answer:

Concentration = 10.33 kg/m³

Explanation:

We are given;

Mass of solids; 10,000 kg

Volume; V = 440,000 L = 440 m³

Rate at which water is pumped out = 40,000 liter/h

Thus, at the end of 5 hours we amount of water that has been replaced with fresh water is = 40,000 liter/h x 5 hours = 200,000 L = 200 m³

Now, since the tank is perfectly mixed, therefore we can calculate a ratio of fresh water to sewage water as;

200m³/440m³ = 5/11

Thus, the amount left will be calculated by multiplying that ratio by the amount of solids;

Thus,

Amount left; = 10000 x (5/11) = 4545 kg

The concentration would be calculated by:

Concentration = amount left/initial volume

Thus,

Concentration = 4545/440 = 10.3 kg/m³

The process in which the system pressure remain constant is called a)-isobaric b)-isochoric c)-isolated d)-isothermal

Answers

Answer:

Isobaric process

Explanation:

The process in which the system pressure remain constant is called is called isobaric process. The word "iso"means same and baric means pressure.

At constant pressure, the work done is given by :

W=p* \Delta V

Where

W is the work done by the system

p is the constant pressure

\Delta V is the change in volume

So, the correct option is (c) " isobaric process ".