At a stop light, a truck traveling at 10.5 m/s passes a car as it starts from rest. The truck travels at constant velocity and the car accelerates at 3 m/s2. How much time does the car take to catch up to the truck?

Answers

Answer 1
Answer:

Answer:

t = 7 sec.

Explanation:

As the car and the truck travel the same distance, assuming a constant acceleration, we can describe the movement of the truck and the car with these equations for this same displacement:

x(truck) = v*t (1)

x(car) = (1)/(2)*a*t^(2) (2)

As the left sides of (1) and (2) are equal each other, the same must be true for the right sides:

v*t = (1)/(2)*a*t^(2)

Solving for t, replacing v= 10.5 m/s and a= 3 m/s², we have:

t = (2*v)/(a) = (2*10.5 m/s)/(3 m/s2)  = 7 sec.

t = 7 sec.


Related Questions

A sphere has a charge of −84.0 nC and a radius of 5.00 cm. What is the magnitude of its electric field 3.90 cm from its surface?
Every few years, winds in Boulder, Colorado, attain sustained speeds of 45.0 m/s (about 100 mi/h) when the jet stream descends during early spring. show answer No Attempt Approximately what is the force due to the Bernoulli effect on a roof having an area of 205 m2? Typical air density in Boulder is 1.14 kg/m3 , and the corresponding atmospheric pressure is 8.89 × 104 N/m2 . (Bernoulli’s principle assumes a laminar flow. Using the principle here produces only an approximate result, because there is significant turbulence.)
The Lamborghini Huracan has an initial acceleration of 0.80g. Its mass, with a driver, is 1510 kg. If an 80 kg passenger rode along, what would the car's acceleration be?​
Two capacitors give an equivalent capacitance of 9.42 pF when connected in parallel and an equivalent capacitance of 1.68 pF when connected in series. What is the capacitance of each capacitor?
A spectroscope breaks light up into its colors, allowing scientists to analyze light from the solar system and universe. By studying the spectral line patterns, widths, strengths and positions, scientists can determine the speed, position, and _____ of celestial bodies.A) age B) origin C) rotation D) temperature

The radius of Earth is 6370 km in the Earth reference frame. The cosmic ray is moving at 0.880Co relative to Earth.a. In the reference frame of a cosmic ray how wide does Earth seem along the flight direction?
b. In the reference frame of a cosmic ray how wide does Earth seem perpendicular to the flight direction?
Express your answer with the appropriate units.

Answers

Answer:

6052114.67492 m

12.742* 10^(6)\ m

Explanation:

v = Velocity of cosmic ray = 0.88c

c = Speed of light = 3* 10^8\ m/s

d = Width of Earth = Diameter of Earth = 12.742* 10^(6)\ m

When the cosmic ray is moving towards Earth then in the frame of the cosmic ray the width of the Earth appears smaller than the original

This happens due to length contraction

Length contraction is given by

d_e=d\sqrt{1-(v^2)/(c^2)}\n\Rightarrow d_e=12.742* 10^(6)\sqrt{1-(0.88^2c^2)/(c^2)}\n\Rightarrow d_e=6052114.67492\ m

The Earth's width is 6052114.67492 m

Contraction only occurs in the cosmic ray's frame of reference in the direction of the ray. But in perpendicular direction the width remains unchanged.

Hence, the width is12.742* 10^(6)\ m

(25) A grinding machine is supported on an isolator that has two springs, each with stiffness of k and one viscous damper with damping constant of c=1.8 kNs/m. The floor on which the machine is mounted is subjected to a harmonic disturbance due to the operation of an unbalanced engine in the vicinity of the grinding machine. The floor oscillates with amplitude Y=3 mm and frequency of 18 Hz. Because of other design constraints, the stiffness of each spring must be greater than 3.25 MN/m. What is the minimum required stiffness of each of the two springs to limit the grinding machine’s steady-state amplitude of oscillation to at most 10 mm? Assume that the grinding machine and the wheel are a rigid body of weight 4200 N and can move in only the vertical direction (the springs deflect the same amount).

Answers

Answer:

k = 15.62 MN/m

Explanation:

Given:-

- The viscous damping constant, c = 1.8 KNs/m

- The floor oscillation magnitude, Yo = 3 mm

- The frequency of floor oscillation, f = 18 Hz.

- The combined weight of the grinding machine and the wheel, W = 4200 N

- Two springs of identical stiffness k are attached in parallel arrangement.

Constraints:-

- The stiffness k > 3.25 MN/m

- The grinding machine’s steady-state amplitude of oscillation to at most 10 mm. ( Xo ≤ 10 mm )

Find:-

What is the minimum required stiffness of each of the two springs as per the constraints given.

Solution:-

- The floor experiences some harmonic excitation due to the unbalanced engine running in the vicinity of the grinding wheel. The amplitude "Yo" and the frequency "f" of the floor excitation is given

- The floor is excited with a harmonic displacement of the form:

                         y ( t ) = Y_o*sin ( w*t )

Where,

           Yo : The amplitude of excitation = 3 mm

           w : The excited frequency = 2*π*f = 2*π*18 = 36π

- The harmonic excitation of the floor takes the form:

                       y ( t ) = 3*sin ( 36\pi *t )                          

- The equation of motion for the floor excitation of mass-spring-damper system is given as follows:

                      m*(d^2x)/(dt^2) + c*(dx)/(dt) + k_e_q*x = k_e_q*y(t) + c*(dy)/(dt)\n\n(m)/(k_e_q)*(d^2x)/(dt^2) + (c)/(k_e_q)*(dx)/(dt) + x = y(t) + (c)/(k_e_q)*(dy)/(dt)

Where,

     m: The combined mass of the rigid body ( wheel + grinding wheel body)        c : The viscous damping coefficient

     k_eq: The equivalent spring stiffness of the system ( parallel )

     x : The absolute motion of mass ( free vibration + excitation )

- We will use the following substitutions to determine the general form of the equation of motion:

                                   w_n = \sqrt{(k_e_q)/(m) } , \n\np = (c)/(2√(k_e_q*m) ) =  (1800)/(2√(k_e_q*428.135) ) =  (43.49628)/(√(k_e_q) )

Where,

               w_n: The natural frequency

               p = ζ = damping ratio = c / cc , damping constant/critical constant

                    

- The Equation of motion becomes:

                         (1)/(w^2_n)*(d^2x)/(dt^2) + (2*p)/(w_n)*(dx)/(dt) + x = y(t) + (2*p)/(w_n)*(dy)/(dt)

                     

- The steady solution of a damped mass-spring system is assumed to be take the form of harmonic excitation of floor i.e:

                         X_s_s = X_o*sin ( wt + \alpha  )       

Where,

              X_o : The amplitude of the steady-state vibration.

              α: The phase angle ( α )

- The steady state solution is independent from system's initial conditions and only depends on the system parameters and the base excitation conditions.

- The general amplitude ( X_o ) for a damped system is given by the relation:

                        X_o = Y_o*\sqrt{(1+ ( 2*p*r)^2)/(( 1 - r^2)^2 + ( 2*p*r)^2) }              

Where,

                r = Frequency ratio =  (w)/(w_n) =  \frac{36*\pi }{\sqrt{(k_e_q*g)/(W) } } = \frac{36*\pi }{\sqrt{(k_e_q)/(428.135) } } = (36*\pi*√(428.135)  )/(√(k_e_q) )

   

- We will use the one of the constraints given to limit the amplitude of steady state oscillation ( Xo ≤ 10 mm ):

- We will use the expression for steady state amplitude of oscillation ( Xo ) and determine a function of frequency ratio ( r ) and damping ratio ( ζ ):

              

                    ((X_o )/(Y_o))^2 \geq (1+ ( 2*p*r)^2)/(( 1 - r^2)^2 + ( 2*p*r)^2)\n\n((X_o )/(Y_o))^2 \geq (1+ ( 2*(43.49628)/(√(k_e_q) )*(36*\pi*√(428.135)  )/(√(k_e_q) ))^2)/(( 1 - ((36*\pi*√(428.135)  )/(√(k_e_q) ))^2)^2 + ( 2*(43.49628)/(√(k_e_q) )*(36*\pi*√(428.135)  )/(√(k_e_q) ))^2)\n\n

                    ((X_o )/(Y_o))^2 \geq ( 1 + (41442858448.85813)/(k_e_q^2 ))/([ 1 - ((5476277.91201  )/(k_e_q) )]^2 +  (41442858448.85813)/(k_e_q^2 )  )}\n\n((X_o )/(Y_o))^2 \geq ( (k_e_q^2 + 41442858448.85813)/(k^2_e_q ))/([ ((k_e_q - 5476277.91201)^2  )/(k_e_q^2) ] +  (41442858448.85813)/(k_e_q^2 )  )}\n

                   ((X_o )/(Y_o))^2 \geq ( k_e_q^2 + 41442858448.85813)/( (k_e_q - 5476277.91201)^2 +41442858448.85813 )}\n\n((10 )/(3))^2 \geq ( k_e_q^2 + 41442858448.85813)/( k^2_e_q  -10952555.82402*k_e_q +3.00311*10^1^3 )}\n\n\n10.11111*k^2_e_q  -121695064.71133*k_e_q +3.33637*10^1^4 \geq 0

- Solve the inequality (  quadratic ):

       k1_e_q \geq  7811740.790197058  (N)/(m)  \n\nk2_e_q \leq   4224034.972855095 (N)/(m)

- The equivalent stiffness of the system is due to the parallel arrangement of the identical springs:

                k_e_q = (k^2)/(2k) = (k)/(2)

- Therefore,

                  k1 \geq  7811740.790197058*2 = 15.62  (MN)/(m)  \n\nk2 \leq   4224034.972855095*2 = 8.448 (MN)/(m)  

- The minimum stiffness of spring is minimum of the two values:

                k = 15.62 MN/m

An earthquake on the ocean floor produced a giant wave called a tsunami. The tsunami traveled through the ocean and hit a remote island, causing a lot of damage. Is the water that hit the island the same water that was above the earthquake on the ocean floor?A No, the water from above the earthquake stayed in the same place and only the energy was transferred.
B No, the energy in the wave pushed the water particles from above the earthquake in the opposite direction.
C Yes, the water particles moved toward the island while the energy remained above the earthquake.

Answers

A lot of the biology particles can be certified by a sphychiatrist that can determine weather they are infected with Ebola

A quarterback claims that he can throw the football a horizontal distance of 167 m. Furthermore, he claims that he can do this by launching the ball at the relatively low angle of 33.1 ° above the horizontal. To evaluate this claim, determine the speed with which this quarterback must throw the ball. Assume that the ball is launched and caught at the same vertical level and that air resistance can be ignored. For comparison a baseball pitcher who can accurately throw a fastball at 45 m/s (100 mph) would be considered exceptional.

Answers

Answer:u=42.29 m/s

Explanation:

Given

Horizontal distance=167 m

launch angle=33.1^(\circ)

Let u be the initial speed of ball

Range=(u^2\sin 2\theta )/(g)

167=(u^2\sin (66.2))/(9.8)

u^2=1788.71

u=√(1788.71)

u=42.29 m/s

Acetone, a component of some types of fingernail polish, has a boiling point of 56°C. What is its boiling point in units of kelvin? Report your answer to the correct number of significant figures.

Answers

Answer:

The boiling point of Acetone is 329K (in 3 significant figures)

Explanation:

Boiling point of Acetone = 56°C = 56 + 273K = 329K (in 3 significant figures)

Answer: using the formula 0°C + 273.15 = 273.15K the boiling point in units of kelvin to significant figures is 329.15k.

Explanation: The boiling point of a substance ( acetone) is the temperature at which the vapour pressure of the liquid substance equals the pressure surrounding it. The boiling point of acetone serves as it's characteristic physical properties. This is measured in degree Celsius (°C ) which can be converted to units of Fahrenheit or kelvin. To convert degree Celsius to kelvin this formula is used: 0°C + 273.15 = 273.15K . Given that acetone has boiling point of 56°C,from the formula 0°C is substituted for 56°C. This gives us:

56°C + 273.15= 319.15k.

Also,measurements given in Kelvin will always be larger numbers than in Celsius and the Kelvin temperature scale does not use the degree (°) symbol because Kelvin is an absolute scale, based on absolute zero, while the zero on the Celsius scale is based on the properties of water. I hope this helps. Thanks

The measurement of an electron's energy requires a time interval of 1.2×10^−8 s . What is the smallest possible uncertainty in the electron's energy?

Answers

Answer:

1.05* 10^(-26)J

Explanation:

The uncertainty in energy is given by \Delta E=(h)/(2\pi \Delta t)

here h is plank's constant which value is 6.67* 10^(-34) and \Delta t is the time interval which is given as 1.2* 10^(-8)sec

So using all the parameters the smallest possible uncertainty in electrons energy is =(6.67* 10^(-34))/(2* \pi * 1.2* 10^(-8))=1.05* 10^(-26)J