Consider the reaction of aqueous potassium sulfate with aqueous g silver nitrate based on the solubility rule predict the product likely to be precipitate write a balanced molecular equation describing the reaction.

Answers

Answer 1
Answer:

Answer:

K₂SO₄(aq)  + 2AgNO₃ (aq) →  2KNO₃(aq) + Ag₂SO₄ (s) ↓

2Ag⁺ (aq) + SO₄⁻²(aq) ⇄ Ag₂SO₄ (s) ↓

Explanation:

Our reactants are: K₂SO₄ and AgNO₃

By the solubility rules, we know that sulfates are insoluble when they react to Ag⁺, Pb²⁺, Ca²⁺, Ba²⁺, Sr²⁺, Hg⁺

We also determine, that salts from nitrate are all soluble.

The reaction is:

K₂SO₄(aq)  + 2AgNO₃ (aq) →  2KNO₃(aq) + Ag₂SO₄ (s) ↓

2Ag⁺ (aq) + SO₄⁻²(aq) ⇄ Ag₂SO₄ (s) ↓


Related Questions

Which description best characterization the motion of particles in a solid
Which best explains why an iceberg floats?Water expands and becomes denser when it freezes.Water contracts and becomes denser when it freezes.
What does dry ashing mean​
What is the molarity of a solution prepared from 25.0 grams of methanol (CH3OH, density = 0.792 g/mL) with 100.0 milliliters of ethanol (CH3CH2OH)? Assume the volumes are additive.
Treatment of (S)-( )-5-methyl-2-cyclohexenone with lithium dimethylcuprate gives, after protonolysis, a good yield of a mixture containing mostly a dextrorotatory ketone A and a trace of an optically inactive isomer B. Treatment of A with zinc amalgam and HCl affords an optically active, dextrorotatory hydrocarbon C. Identify compounds A, B, and C, including stereochemical configurations. Be sure to explicitly draw H and both wedge/dash bonds at any configuration center.

Which chemical equation follows the law of conservation of mass?

Answers

The chemical equation presented in option A follows the law of conservation of mass.

The principle of conservation of mass states, mass can neither be created nor destroyed but can be transformed from one form to another.

A reaction that follows the law of conservation of mass,  must have equal number of moles each elements in reactants side and products side.

Only option A follows the law of conservation of mass;

2LiOH \ + \ + H_2CO_3 \ ---> \ Li_2CO_3 \ + \ 2H_2O

Thus, we can conclude that the chemical equation presented in option A follows the law of conservation of mass.

Learn more here:brainly.com/question/13383562

Answer:

Option A

Explanation:

The expression that obeys the law of conservation of mass is choice A;

         2LiOH  +  H₂CO₃   →   Li₂CO₃  + 2H₂O

According to the law of conservation of mass; "in a chemical reaction, matter is neither created nor destroyed". By this law, mass is usually conserved.

The equation shows that mass is conserved because the number of moles of each specie is found on both sides

                                                Number of moles

                                 Li                   O                  H              C

Reactants                 2                    5                   4               1

Products                   2                    5                   4               1

This shows that mass is indeed conserved.

Draw the Lewis structure for BrCl3. What are the approximate bond angles about the central atom?a. 60°.
b. 90°.
c. 109°.
d. 120°.
e. 180°.

Answers

Answer:

Explanation:

BrCl₃ is an interhalogen compound with a hybridization of sp³d. The approximate bond angles can be predicted from the structure (attached below). Although, the lewis structure might be predicted to be trigonal bipyramidal from the structure, it is however a T-shaped geometry because of it's two lone pairs.

Also, from the structure attached, it can be predicted that the approximate bond angles about the central atom is 120° (360 ÷ 3) since each of the three chlorine atoms is equally spaced about the central atom.

The Lewis structure for BrCl₃ is attached to the image below. The bond angles around the central atom, bromine (Br), are 90 degrees between the bromine and each chlorine atom. Therefore, option B is correct.

A Lewis structure, also known as an electron-dot structure or Lewis dot structure is a diagram that represents the valence electrons of an atom or molecule.

Bromine (Br) is in Group 7A and has 7 valence electrons, while each chlorine (Cl) atom in Group 7A also has 7 valence electrons.

Br: 1 atom × 7 valence electrons = 7 valence electrons

Cl: 3 atoms × 7 valence electrons = 21 valence electrons

Total valence electrons = 7 + 21 = 28

To learn more about the bond angle, follow the link:

brainly.com/question/31324226

#SPJ6

You are given mixture made of 290 grams of water and 14.2 grams of salt. Determine the % by mass of salt in the salt solution.

Answers

Answer:

Solution is 4.67% by mass of salt

Explanation:

% by mass is the concentration that defines the mass of solute in 100g of solution.

In this case we have to find out the mass of solution with the data given:

Mass of solution = Mass of solute + Mass of solvent

Solute:  Salt → 14.2 g

Solvent: Water → 290 g

Solution's mass = 14.2 g + 290g = 304.2 g

% by mass = (mass of solute / mass of solution) . 100

(14.2 g / 304.2g) . 100 = 4.67 %

You are asked to prepare 500 mL 0.300 M500 mL 0.300 M acetate buffer at pH 4.904.90 using only pure acetic acid ( MW=60.05 g/mol,MW=60.05 g/mol, pKa=4.76), pKa=4.76), 3.00 M NaOH,3.00 M NaOH, and water. Answer the questions regarding the preparation of the buffer. 1. How many grams of acetic acid will be needed to prepare the 500 mL buffer? Note that the given concentration of acetate refers to the concentration of all acetate species in solution.

Answers

The quantity of acetic acid that is needed to prepare the 500 mL buffer is 9.0075 grams.

Given the following data:

  • Volume of acetate buffer = 500 mL to L = 0.5 L.
  • Molarity of acetate buffer = 0.300 M.
  • pH = 4.90.
  • MW = 60.05 g/mol.
  • pKa = 4.76.

How to calculate the mass of acetic acid.

First of all, we would write the equilibrium chemical reaction for acetate-acetic acid as follows:

                                CH_3COOH \rightleftharpoons CH_3COO^(-)+H^+

Next, we would calculate HA by applying Henderson-Hasselbalch equation:

pH =pka+ log_(10) (A^-)/(HA)

Where:

  • HA is acetic acid.
  • A^-  is acetate ion.

Substituting the given parameters into the formula, we have;

4.90 =4.76+ log_(10) (A^-)/(HA)\n\n4.90 -4.76+ log_(10) (A^-)/(HA)\n\n(A^-)/(HA)=1.38\n\nA^- = 1.38[HA]

For the concentration of both acids, we have:

[HA]+[A^-]=0.300M\n\n[HA]+1.38[HA]=0.300M\n\n2.38[HA]=0.300M\n\nHA = 0.126

For acetate ion:

A^- = 1.38[HA] = 1.38 * 0.126\n\nA^- =0.174

At a volume of 0.5 liters, we have:

HA = 0.5 * 0.126\n\nHA = 0.063 \;moles

A^- =  0.5 * 0.174\n\nA^- =0.087 \;moles

By stoichiometry:

Total moles = 0.063 + 0.087 = 0.15 moles.

Mass = number \;of \;moles * molar\;mass\n\nMass =0.15 * 60.05

Mass = 9.0075 grams.

Read more on moles here: brainly.com/question/3173452

Answer:

You will need 9,0 g of acetic acid

Explanation:

The equilibrium acetate-acetic acid is:

CH₃COOH ⇄ CH₃COO⁻ + H⁺ pka = 4,76

Using Henderson-Hasselbalch you will obtain:

pH = pka + log₁₀([A^(-)])/([HA])

Where HA is acetic acid and A⁻ is acetate ion

4,90 = 4,76 + log₁₀([A^(-)])/([HA])

1,38 = ([A^(-)])/([HA])(1)

As acetate concentration is 0,300M:

0,300M = [HA] + [A⁻] (2)

Replacing (2) in (1):

[HA] = 0,126 M

And:

[A⁻] = 0,174 M

As you need to produce 500 mL:

0,5 L × 0,126 M = 0,063 moles of acetic acid

0,5 L × 0,174 M = 0,087 moles of acetate

To produce moles of acetate from acetic acid:

CH₃COOH + NaOH → CH₃COO⁻ + Na⁺ + H₂O

Thus, moles of acetate are equivalents to moles of NaOH and all acetates comes from acetic acid, thus:

0,087 moles of acetate + 0,063 moles of acetic acid  ≡ 0,15 moles of acetic acid ×(60,05 g)/(1mol) = 9,0 g of acetic acid

I hope it helps!

Can someone give me brief background info about chromatography experiment?

Answers

Chromatography is a pretty accurate description of what happens to ink on wet paper, because it literally means "color writing" (from the Greek words chroma and graphe). Really, though, it's a bit of a misnomer because it often doesn't involve color, paper, ink, or writing. Chromatography is actually a way of separating out a mixture of chemicals, which are in gas or liquid form, by letting them creep slowly past another substance, which is typically a liquid or solid. So, with the ink and paper trick for example, we have a liquid (the ink) dissolved in water or another solvent creeping over the surface of a solid (the paper).

The essential thing about chromatography is that we have some mixture in one state of matter (something like a gas or liquid) moving over the surface of something else in another state of matter (a liquid or solid) that stays where it is. The moving substance is called the mobile phase and the substance that stays put is the stationary phase. As the mobile phase moves, it separates out into its components on the stationary phase. We can then identify them one by one.

g For a given arrangement of ions, the lattice energy increases as ionic radius ________ and as ionic charge ________.

Answers

For a given arrangement of ions, the lattice energy increases as ionic radius decreases and as ionic charge increases.

What is ion?

An atom or molecule is said to be an ion if one or more of whose valence electrons have been acquired or lost, providing it a net negative or positive electrical charge.

Faraday knew that metals disintegrated together into solution place at a single electrode and that a second metal was placed first from solution at the opposite electrode, as such matter had to be trying to move underneath the impact of an electrical current even though he was unable to identify the particles trying to move between the electrodes.  For a given arrangement of ions, the lattice energy increases as ionic radius decreases and as ionic charge increases.

Therefore, for a given arrangement of ions, the lattice energy increases as ionic radius decreases and as ionic charge increases.

To learn more about ion, here:

brainly.com/question/13692734

#SPJ6

Answer:

as the charge of the ions increases, the lattice energy increases. as the size of the ions increases, the lattice energy decreases.