How much energy (in J) is lost when a sample of iron with a mass of 26.4 g cools from 74.0 ∘C to 26.0 ∘C?

Answers

Answer 1
Answer:

Answer:

Q=-526.6J

Explanation:

Hello,

In this case, for the computation of the energy loss when the cooling process is carried out, we use the shown below equation:

Q=mCp\Delta T

Whereas we need the mass, specific heat and change in temperature of iron within the process. Thus, the only value we need is the specific heat that is 0.444 J/(g°C), therefore, we compute the heat loss:

Q=26.4g*0.444(J)/(g\°C)*(26.0\°C-74.0\°C)\n \nQ=-526.6J

Negative sign points out the loss due to the cooling.

Regards.


Related Questions

. Which law of motion relates the action of a stretched rubber band
State and explain grahms law of diffusion​
Use the following structures of amino acids to answer the questions below. Note that the difference in the structures (the side chains) is highlighted by gray shading.A student performed chromatography of the four amino acids and theresults were shown in the chromatogram below. If an anion exchangecolumn (column is positively charged) was used in a neutral buffer,assign each amino acid to the corresponding peak in the chromatogram.
1. Which statement describes the particles of an ideal gas, based on thekinetic molecular theory?* O There are attractive forces between the particles. O The particles move in circular paths. O The collisions between the particles reduce the total energy of the gas. О The volume of the gas particles is negligible compared with the total volume of the gas.
The escape velocity required for gas molecules to overcome the earth’s gravity and go off to outer space is 1.12 x 103m/s at 15oC. Calculate the molar mass of a species with that velocity.

The correct electron configuration for magnesium is: 1s 22s 22p 63s 3 True False

Answers

Answer:

False

Explanation:

Magnesium is the element of second group and third period. The electronic configuration of magnesium is - 2, 8, 2 or 1s^22s^22p^63s^2

There are 2 valence electrons of magnesium.

Only the valence electrons are shown by dots in the Lewis structure.  

As, stated above, there are only two valence electrons of magnesium, so in the Lewis structure, two dots are made around the magnesium symbol.

Given that the electronic configuration is:- 1s^22s^22p^63s^3.

Orbital s cannot accommodate 3 electrons and also in magnesium it has 3s^2. Hence, the statement is false.

Aqueous hydrochloric acid HCl will react with solid sodium hydroxide NaOH to produce aqueous sodium chloride NaCl and liquid water H2O. Suppose 9.84 g of hydrochloric acid is mixed with 3.1 g of sodium hydroxide. Calculate the maximum mass of water that could be produced by the chemical reaction. Round your answer to 2 significant digits.

Answers

Answer:

1.4 g H₂O

Explanation:

In a reaction, the reactants are usually not present in exactstoichiometric amounts, that is, in the proportions indicated by the balanced equation. Frequently a large excess of one reactant is supplied to ensure that the more expensive reactant is completely converted to the desired product. Consequently, some reactant will be left over at the end of the reaction. The reactant used up first in a reaction is called the limiting reagent, because the maximum amount of product formed depends on how much of this reactant was originally present. When this reactant is used up, no more product can be formed.

The activiation energy required for a chemical reaction can be decreased by? A) increasing the surface area of the reactant.
B) increasing the temperature of the reactant.
C) adding a catalyst to the reaction.
D)adding more reactant​

Answers

Answer:

C)

Explanation:

C) adding a catalyst to the reaction.

Which of the following statements about compounds is true?A- Each Compound contains only one element.
A- Each Compound contains only one element.

B- Compound can be classified as either heterogenous or homogenous.

C- A Compound has a defined ratio by mass of the elements that it contains

D- Compounds Vary in chemical composition depending on the sample size.

Answers

The following statements about compounds is true that a compound has a defined ratio by mass of the elements that it contains. Option C is correct.

A compound is a substance that is made up of two or more elements that are chemically bonded together. The elements in a compound are always present in a fixed ratio by mass. This means that no matter how much of the compound you have, the ratio of the elements will always be the same.

For example, water is a compound that is made up of hydrogen and oxygen. The ratio of hydrogen to oxygen in water is always 2:1 by mass. This means that no matter how much water you have, there will always be twice as much hydrogen as oxygen.

A compound can be classified as either homogeneous or heterogeneous, but not both. Homogeneous compounds have a uniform composition throughout, while heterogeneous compounds have different compositions in different parts of the sample. Compounds do not vary in chemical composition depending on the sample size. The chemical composition of a compound is always the same, regardless of how much of the compound you have. Option C is correct.

To know more about the Compounds, here

brainly.com/question/30587659

#SPJ3

Explanation:

A and D is the answer

Hope the answer is right

A mixture contains N a H C O 3 together with unreactive components. A 1.68 g sample of the mixture reacts with H A to produce 0.561 g of C O 2 . What is the percent by mass of N a H C O 3 in the original mixture

Answers

There is 65% of NaHCO3 in the sample.

The equation of the reaction is;

HA + NaHCO3 -----> NaA + CO2 + H2O

Amount of CO2 formed = mass/molar mass

mass of CO2 = 0.561 g/44 g/mol = 0.013 moles

From the balanced reaction equation;

1 mole of NaHCO3 yields 1 mole of CO2

0.013 moles of Na2CO3 yields 0.013 moles of CO2

Hence, mass of NaHCO3 in the sample = 0.013 moles × 84 g/mol = 1.092 g of NaHCO3

Percentage by mass of NaHCO3 = 1.092 g/1.68 g ×100/1

= 65%

Learn more: brainly.com/question/25150590

Answer:

63.75%.

Explanation:

The first step here is to write out the reaction showing the chemical reaction between the two chemical species. Thus, we have;

HA(aq) + NaHCO3 --------------> CO2(g) + H20(l) + NaA(aq).

Therefore, the mole ratio is 1 : 1 : 1 : 1 that is go say one mole of HA reacted with one mole of NaHCO3 to give one mole of CO2 and one .ole of NaA.

Hence, the number of moles of CO2 = mass/molar mass = 0.561/44 = 0.01275 moles.

Thus, the number of moles of NaHCO3 = number of moles of CO2 = 0.01275 moles.

Therefore, we have ( 0.01275 moles × 84 g/mol) grams = 1.071 g NaHCO3 in the mixture.

Therefore, the percent by mass of N a H C O 3 in the original mixture = 1.071/1.68 × 100 = 63.75%.

1. In a hydrogen fuel cell, hydrogen gas and oxygen gas are combined to form water. (1) Write the balanced chemical equation describing this reaction using the lowest whole number coefficients. (2) Identify the oxidizing agent and reducing agent. (3) Determine the number of electrons transferred in the balanced chemical equation

Answers

Explanation:

Hydrogen + Oxygen --> Water

(1) Write the balanced chemical equation describing this reaction using the lowest whole number coefficients.

2H2(g) + O2(g) ---> 2H2O(g)

(2) Identify the oxidizing agent and reducing agent.

Oxidizing agent = O (There is decrease in oxidation number from 0 to -2)

Reducing agent = H (There is increase in oxidation number form 0 to  +1)

(3) Determine the number of electrons transferred in the balanced chemical equation

2H2(g) -->  4H+   + 4e- (4 hydrogen atom lost a single electron each)

O2 + 4e-  --> 2O2- (Two oxygen gain 2 electrons each)

Total number of electrons transferred in the balanced chemical equation is 4.